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PKEFACE.

Within a comparatively short time, the algebra require-

ment for admission to many of our Colleges and Schools

of Science has been much increased in both thoroughness of

preparation and amount of subject-matter. This increase

has made necessary the rearrangement and extension of

elementary algebra, and it is for this reason that the present

revision of Hall and Knight's Elementary Algebra has been

undertaken.

The marked success of the work, and the hearty endorse-

ment by many of our ablest educators of the treatment of

the subject as therein presented, warrant the belief that the

present edition, with its additional subject-matter, will be

found a desirable arrangement and satisfactory treatment

"of every part of the subject required for admission to any

of our Colleges or Schools of Technology.

Many changes in the original chapters have been made,

among which we would call attention to the following: A
proof, by mathematical induction, of the binomial theorem

for positive integral index has been added to Chapter xxxix.

;

a method of finding a factor that will rationalize any bino-

mial surd follows the treatment of binomial quadratic surds

;

Chapter xlii. has been re-written in part, and appears as a

chapter on equations in quadratic form ; and the chapter
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on logarithms lias been enlarged by the addition of a four-

place table of logarithms with explanation of its use.

Chapters xxi., xxv., xxx., xxxiii., xxxviii., xlii., xliii.,

XLiv., XLV., XLVi., XLVii., XLix., and L. treat of portions of

the subject that have not appeared in former editions.

A chapter on General Theory of Equations is not usually

found in an Elementary Algebra, but properly finds here

a place in accordance with the purpose of the present

revision; and its introduction makes the work available

for use in college classes. Carefully selected exercises are

given with each chapter, and at the end of the work a

large miscellaneous collection will be found.

The Higher Algebra of Messrs. Hall and Knight has been

drawn upon, and the works of Todliunter, Chrystal, and

DeMorgan consulted in preparing the new chapters.

I gratefully acknowledge my indebtedness to Prof. J.

Burkitt Webb of the Stevens Institute of Technology both

for contributions of subject-matter, and valuable suggestions

as to methods of treatment. My thanks are also due to

Prof. W. H. Bristol, of the same institution, for suggestions

as to the arrangement of the chapter on General Theory of

Equations.
FRANK L. SEVENOAK.

June, 1896.



PEEFACE TO SECOND EDITION.

The printing of the present edition from entirely new

plates lias enabled us to correct a few typographical errors

found in the first edition, and give, at the suggestion of

friends, a somewhat fuller explanation of the more diffi-

cult parts of the subject. We hope that the addition of

new material to Chapters iii., iv., v., x., xx., xxi., xlii.,

XLviii., and of several sets of Miscellaneous Examples,

will render the book still more acceptable to those whose

commendation of the former edition has given us much

pleasure.

June, 1896.
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ALGEBRA.

CHAPTER I.

Definitions. Substitutions.

1. Algebra treats of quantities as in Arithmetic, but with

greater generality ; for while the quantities used in arith-

metical processes are denoted by figures, which have a

single definite value, algebraic quantities are denoted by
symbols, which may have any value we choose to assign

to them.

The symbols of quantity employed are usually the letters

of our own alphabet ; and, though there is no restriction as

to the numerical values a symbol may represent, it is under-

stood that in the same piece of work it keeps the same value

throughout. Thus, when we say " let a equal 1," we do not

mean that a must have the value 1 always, but only in the

particular example we are considering. Moreover, we may
operate with symbols without assigning to them any par-

ticular numerical value ; indeed it is with such operations

that Algebra is chiefly concerned.

We begin with the definitions of Algebra, premising that

the symbols -f, — , x, h-, (), = will have the same mean-
ings as in Arithmetic. Also, for the present, it will be

assumed that all the algebraic symbols employed represent

integral numbers.

2. An algebraic expression is a collection of symbols; it

may consist of one or more terms, which are the parts sepa-

B 1



2 ALGEBRA.

rated from each other by the signs + and —
. Thus,

7a-j-ob — Sc — x-{-2y is an expression consisting of dve

terms.

Note. When no sign precedes a term the sign + is understood.

3. Expressions are either simple or compound. A simple

expression consists of one term, as 5 a. A compound expres-

sion consists of two or more terms. Compound expressions

may be further distinguished. Thus an expression of two

terms, as 3 a — 2 b, is often called a binomial, and one of

three terms, as 2 a + 3 6 + c, a trinomial. Simple expres-

sions are frequently spoken of as monomials, and compound

expressions as multinomials or polynomials.

4. When two or more quantities are multiplied together

the result is called the product. One important difference

between the notation of Arithmetic and Algebra should be

here remarked. In Arithmetic the product of 2 and 3 is

written 2x3, whereas in Algebra the product of a and b

may be written in any of the forms a x b, a - b, or ab. The

form ab is the most usual. Thus, if a = 2, 6 = 3, the prod-

uct ab = a xb = 2 x3 = 6; but in Arithmetic 23 means

"twenty-three," or 2 x 10 + 3.

5. Each of the quantities multiplied together to form a

product is called a factor of the product. Thus 5, a, b are

the factors of the product 5 ab.

Note. The beginner should carefully notice the difference be-

tween term and factor.

6. When one of the factors of an expression is a numeri-

cal quantity, it is called the coefficient of the remaining

factors. Thus, in the expression oab, o is the coefficient.

But the word coefficient is also used in a wider sense, and it

is sometimes convenient to consider any factor, or factors,

of a product as the coefficient of the remaining factors.

Thus, in the product G abc, G a may be appropriately called
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the coefficient of be. A coefficient which is not merely

numerical is sometimes called a literal coefficient.

Note. When the coefficient is unity it is usually omitted, and we
write simply a, instead of 1 a.

7. A power of a quantity is the product obtained by re-

peating that quantity any number of times as a factor, and

is expressed by writing the number of factors to the right

of the quantity and above it. Thus,

a X a is called the seco7id power of a, and is written a^
;

a X a X a is called the third power of a, and is written a?
;

and so on.

The index or exponent is the number which expresses the

power of any quantity. Thus 2, 5, 7 are respectively the

indices of a^, a^, dJ.

Note, a^ is usually read "« squared" ; a^ is read "« cubed"
;

a^ is read " a to the fourth "
; and so on.

When the index is unity it is omitted, and we write simply a,

instead of o}. Thus a, 1 rt, a^, and 1 o} all have the same meaning.

8. The beginner must be careful to distinguish between

coefficient and index.

Ex. 1. What is the difference in meaning between 3 a and a^ ?

By 3 a we mean the product of the quantities 3 and a.

By a^ we mean the product of the quantities a, «, a.

Thus, if a = 4,

3ff = 3xa = 3x4 = 12;

a'^=:ax«xa = 4x4x4 — 64.

Ex. 2. If 6 = 5, distinguish between 4 6^ and 2 h^.

Here 4&'^ = 4x6x& = 4x5x5 = 100
;

whereas 2 6* =:2x&x&x?>x/) = 2x5x5x5x5 = 1250.

Ex. 3. If ic = 1, find the value of 5x^.

Here 5x'* = 5xxxajxxxx = 5xlxlxlxl = 5.

Note. The beginner should observe that every power of 1 is 1.

Ex. 4. If a = 4, X = 1, find Uie value of 5x«.

5x" = 5xx'' = 5xl'* = 5xl = 5.
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9. The Sign of Continuation, •••, is read **and so on."

10. The Sign of Deduction, .-., is read ** therefore" or
*' hence."

11. In arithmetical multiplication the order in which the

factors of a product are written is immaterial. Thus

3x4 = 4x3.

In like manner in Algebra ab and ha each denote the

product of the two quantities represented by the letters a
and h, and have therefore the same value. Although it is

immaterial in what order the factors of a product are written,

it is usual to arrange them alphabetically. Fractional co-

efficients which are greater than unity are usually kept in

the form of improper fractions.

Ex. If a = 6, a: = 7, s = 5, find the value of i| axz.

Here if ax^ = if x 6 x 7 x 5 = 273.

EXAMPLES I. a.

If a = 7,
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e (M —
2'

hoc^ 8x9x6^ 8 X 9 X 36

Ex. 2. If a = 4, ^ = 9, a: = 6, find the value of
27 a'

27 a^ 27 X # 27 x 64
11.

13. If one factor of a product is equal to 0, the product

must be equal to 0, ivhafever values the other factors may have.

A factor is usually called a zero factor.

For instance, if x = 0, then alfxy^ contains a zero factor.

Therefore cOfxy^ = when x = 0, whatever be the values of

«, b, y.

Again, if c = 0, then c^ = ; therefore alrc^ = 0, whatever

values rt and b may have.

Note. Every power of is 0.

EXAMPLES I. b.

If a = 7, b = 2, c = 0, X = 5, y = o^ find the value of

1. 4ax2. 3. Sh-^y. 5. f&'^x. 7. ^xy^. 9. a^cy.

2. a^b. 4. 3xy'\ 6. ^b^y^. 8. «3^'. 10. Sx^y.

If a = 2, 6 = 3, c = 1, p = 0, g = 4, r = 6, find the value of

11 §^. 14. i^'. 17. ^. 20. 3''2^ 23. ^^^.
Sb 9a^ 9a'- 64r«

12. ^i^. 15. 3«2i!)^. 18. 5«*c"-. 21. 2'-rt5. 24. ?^.
9^/ 32

13. ^^. 16. iba>: 19. ^^. 22. c^b^. 25. ^.

14. Definition. The square root of any proposed ex-

pression is that quantity whose square, or second power, is

equal to the given expression. Thus the square root of 81

is 9, because 9^ = 81.

The square root of a is denoted by -^a, or more simply ya.
Similarly the cube, fourth, fifth, etc., root of any expres-

sion is that quantity Avhose third, fourth, fifth, etc., power

is equal to the given expression.

The roots are denoted by the symbols -^, ^, ^, etc.

Examples : ^27 = 3 ; because 3^ = 27.

^32 =z 2 ; because 2^ = 32.
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The symbol ^ is sometimes called the radical sign.

Ex. 1. Find the value of 5y'(6 a^b^c), when « = 3, 5 = 1, c -

i)y/{6a^b*c)=o X V(6 x 33 x 1* x 8)

= 6 X V(6 X 27 X 8) = 5 X ^1296

= 5 X 36 = 180.

Ex. 2. Fmd the value of ^ I'^X ^hen a = 9, b = S, x = 5.

^ 9x 81 \ ^ / O X 9x 9 \ 9

.8x125/ AV 1000 / 10*

M/a6*\_^/9x 34\_3i/9x 81 \_ ^ /9 x 9x 9\_ 9

EXAMPLES I. c.

If a = 8, c = 0, k = 9, X = 4, ?/ = 1, find the value of

1. V(2«)-
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given, and by combining the terms the numerical value of

the whole expression is obtained.

16. We have already, in Art. S, called attention to the

importance of carefully distinguishing between coefficient

and index; confusion between these is such a fruitful source

of error with beginners that it may not be unnecessary once

more to dwell on the distinction.

Ex. 1. When c = 5, find the value of c* - 4 c + 2 c^ - 3 c^.

Here c* = 5^ = 5 x 5 x 5 x 5 = 625
;

4 c = 4 X 5 = 20
;

2 c3 = 2 X 53 = 2 X 5 X 5 X 5 = 250
;

3 c2 = 3 X 52 = 3 X 5 X 5 = 75.

Hence the value of the expression = 625 — 20 + 250 — 75 = 780.

Ex. 2. When p = 9, r = 6, k = 4, find the value of

= lX 1+9-2=:: 7i.

17. By Art. 13 any term which contains a zero factor is

itself zero, and may be called a zero term.

Ex. 1. If a = 2, 6 = 0, aj = 3, y = 1, find the value of

4 a3 ^ab^ + 2 xy'^ + 3 abx.

The expression = (4 x 2^) - + (2 x 3 x 1) +
^ 32 - + 6 + = 38.

Note. The two zero terms do not affect the result.

a^y + 7 abx - | y^, when

5, & = 0, X = 7, y = \.

- f 2/3 3= 4 X 72 - 52 X 1 + - f X 13

= 29f-25-2t = l^.
-

Note. The zero term does not affect the result,

18. In working examples the student should pay atten-

tion to the following hints

:

1. Too much importance cannot be attached to neatness

of style and arrangement. The beginner should remember
that neatness is in itself conducive to accuracy.
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2. The sign = should never be used except to connect

quantities ^vhich are equal. Beginners should be particu-

larly careful not to employ the sign of equality in any
vague and inexact sense.

3. Unless the expressions are very short the signs of

equality in the steps of the work should be placed one

under the other.

4. It should be clearly brought out how each step follows

from the one before it ; for this purpose it mil sometimes

be advisable to add short verbal explanations ; the impor-

tance of this will be seen later.

EXAMPLES I. d.

li a = 2, b = S, c = \ , d = 0, find the numerical value of

1. Ort + 56 -8c+ 9f?. 6. 2bc + Scd--ida-\- l^ab.

2. 3 a - 4 6 + 6 c + 5 c7. 7. Sbcd-\- 5 cda - 7 dab + abc.

3. 6ab-Scd-]-2da-5cb-\-2db. 8. a^ + b'^ + c'^ + cR

4. abc + bed + cda + dab. 9. 2a^ + Sb^-i c*.

5. Sabc-2bcd-{-2cda-4dab. 10. a^ + b* - cK

. If a = 1, 6 = 2, c = 3, d = 0, find the numerical value of

11. a^ + b^+ c'3 + #. 12. 4 6c3 _ a^ - 6^ - | abh.

13. Sabc-b'^c-Qa^

i4. 2 a2 + 2 6-^ + 2 c-2 + 2 fr-2 - 2 6c - 2 cd -2 da -2 ab.

15. a2 + 2 6-^ + 2 c2 + d^ + 2 a6 + 2 6c + fed

16. 2c2 + 2a2 + 2 62-4c6 + 6rt6aZ.

17. 13 a2 + -V C-* + 20 rt6 - 16 ac - 16 6c.

18. 6 rt6 - I ac2 - 2 « + i
?>* - 3 (Z + I cK

19. 125 6*c-9d5 + 3a6cU

4, find the value of

24. ^{bxij)-lb'' + ^.
b^y

If a = 8, 6 = 6, c = l, a;



CHAPTER II.

Negative Quantities. Addition of Like Terms.

19. In liis arithmetical work the student has been accus-

tomed to deal with numerical quantities connected by the

signs + and — ; and in finding the value of an expression

such as If + 7| — 3|- H- 6 — 4i he understands that the quan-

tities to which the sign -f- is prefixed are additive, and those

to which the sign — is prefixed are subtractive, Avhile the

first quantity, 1|, to which no sign is prefixed, is counted

among the additive terms. The same notions prevail in

Algebra ; thus in using the expression 7 a + 36 — 4c — 2 c?

we understand the symbols 7 a and 3 6 to be additive, while

4 c and 2 d are subtractive.

20. But in Arithmetic the suui of the additive terms is

always greater than the sum of the subtractive terms ; and

if the reverse were the case, the result would have no arith-

metical meaning. In Algebra, however, not only may the

sum of the subtractive terms exceed that of the additive,

but a subtractive term may stand alone, and yet have a

meaning quite intelligible.

Hence all algebraic quantities may be divided into pos-

itive quantities and negative quantities, according as they

are expressed with the sign -f or the sign — ; and this is

quite irrespective of any actual process of addition and sub-

traction.

This idea may be made clearer by one or two simple illus-

trations.

(i) Suppose a man were to gain $ 100 and then lose $ 70,

his total gain would be $30. But if he first gains $ 70 and
then loses f 100 the result of his trading is a loss of $ 30.

9
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The corresponding algebraic statements would be

^100-^70 = + $30,

$70 -$100 = -$30,

and the negative quantity in the second case is interpreted

as a debt, that is, a sum of money opposite in character to

the positive quantity, or gain, in the first case ; in fact it

may be said to possess a subtractive quality which would
produce its effect on other transactions, or perhaps wholly

counterbalance a sum gained.

(ii) Suppose a man starting from a given point were to

walk along a straight road 100 yards forwards and then

70 yards backwards, his distance from the starting-point

would be 30 yards. But if he first walks 70 yards forwards

and then 100 yards backwards his distance from the starting-

point would be 30 yards, but on the opposite side of it. As
before we have

100 yards — 70 yards = + 30 yards,

70 yards — 100 yards = — 30 yards.

In each of these cases the man's absolute distance from the

starting-point is the same ; but by taking the positive and
negative signs into account, we see that — 30 is a distance

from the starting-point equal in magnitude but opposite in

direction to the distance represented by + 30. Thus the

negative sign may here be taken as indicating a reversal of
direction.

Many other illustrations might be chosen ; but it will be

sufficient here to remind the student that a subtractive

quantity is always opposite in character to an additive

quantity of equal absolute value.

Note. Absolute value is the value taken independently of the
signs -I- and —

.

21. Defixitiox. When any number of quantities are

connected by the signs -h and — , the resulting expression

is called their algebraic sum. Thus 11a — 27 a -\- ISb — 5b
is an algebraic sum. This expression, however, is not, as

will be shown, in its simplest form.
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22. Addition is the process of finding in simplest form the

algebraic sum of any number of quantities.

23. Like terms, or similar terms, do not differ, or differ

only in their numerical coefficients. Other terms are called

unlike, or dissimilar. Thus 3 a, 7 a ; 5 a'^h, 2 a^h ; 3 a^h^,

— 4 cC'h- are pairs of like terms ; and 4 a, 3 6 ; 7 a^, 9 d-h

are pairs of unlike terms.

ADDITION OF LIKE TERMS.

Rule I. The sum of a number of like terms is a like term.

Rule II. If all the terms are positive, add the coefficients.

Ex. Find the value of 8 a + 5 a.

Here we have to increase 8 like things by 5 like things of the

same kind, and the aggregate is 13 of such things
;

for instance, 8 lbs. + 5 lbs. = 13 lbs.

Hence also, 8a+5a = 13«.

Similarly, 8 a + 5 a + r< + 2 « + 6 a = 22 a.

Rule III. If all the terms are negative, add the coefficients

numericcdly and pjrefix the minus sign to the sum.

Ex. To find the sum of —3 a:, — 6x, — 7 x, — x.

Here the word sum indicates the aggregate of 4 subtractive quanti-

ties of like character. In other words, we have to take away succes-

sively 3, 5, 7, 1 like things, and tlie result is the same as taking away
3 + 5 + 7 + 1 such things in the aggregate.

Thus the sum of — 3 a:, — 5 a*, — 7 x, — a-, is — 16 x.

Rule IV. If the terms are not cdl of the same sign, add

together separately the coefficients of cdl the positive terms and

the coefficients of all the negative terms; the difference of these

two results, p)receded by the sign of the greater, loill give the

coefficient of the sum required.

Ex. 1. The sum of 17 aj and — 8 a: is 9x, for the difference of 17

and 8 is 9, and the greater is positive.

Ex. 2. To find the sum of 8 a, — 9«, — «, 3 a, 4 a, —11a, a.

The sum of the coefficients of the positive terms is 16.

The sum of the coefficients of the negative terms is 2L
The difference of these is 5, and the sign of the gieater is negative

;

lience the required sum is — 5 a.
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We need not, however, adhere strictly to this rule, for the

terms may be added or subtracted in the order we find most

convenient.

This process is called collecting terms.

Ex. 3. Find the sum of | «, 3 «, — i a, — 2 a.

The sum = 3f « - 2 i a = 1^ « = f «.

Note. The sum of two quantities numerically equal but with

opposite signs is zero. The sum of 5 a and — ba is 0.

EXAMPLES II.

Find the sum of

1. 5 a, Trt, 11a, rt, 23 a. 9. - Uh, - ob, - Sb, - b.

2. Ax, X, Sx,lx,9 X. 10. ox, - X, -Sx, 2x, - x.

3. 7 6, 10 6, 116, 9 6, 2 ft. 11. 26y, -lly, -15y, y, -Sij,'2y.

4. 6 c, 8 c, 2c, 15c, 19c, 100c, c. 12. 5/, - 9/, - 3/; 21/, - 30/.

5. _ 3 X, - 5 .'•, - 11 :r, - 7 a:. 13. 2 s, - 3 s, s, - s, - 5 s, 5 s.

6. -56,-66,-116,-186. 14. 1 y, - Uy, 16y, - Sy, - 2y.

7. —'3y, —' y, —y, —2y, —Ay. 15. 5x, —Ix, —Ix^lx, 2.r, —5a-.

8. — c, -2 c, —50 c, —13 c. 16. 7a6, — 3a6, —oab, 2ab, ah.

Find the value of

17. _9a;2 + 11x2 + 3x2- 4a;2. 19. 3a3-7a3-8a3+2a3-lla3.

18. 3a2x- 18a2x + a2x. 20. 4x^ - 5x^ - Sx^ - 1 x^

21. 4 a262 _ a^l/2 _ 7 cr-b'^ + 5 a262 - a262.

22. -9x^-4x4- 12x^+13x4 - 7x*.

23. 7 abed — 11 abed — 41 abed + 2 abed.

24. |x-Jx + x+fx. 25. P.a + ^a - ^a.

26. -56 + i6-|6 + 26-^6 + t&.

27. - f X2 - 2 X2 - f X2 + X2 +i X2 + i^X^.

28. - a6 - h ab - lab - \ab - I ab + a6 + y^ a6.

29. fx-|x + |x-2x + Ya;-i:e + a;.

30. -.5 a;2 - |x2 - Ax2 - ix2 - x2.



CHAPTER III.

Sesiple Brackets. Addition. Subteactiox.

24. When a number of arithmetical quantities are con-

nected by the signs + and — , the value of the result is the

same in whatever order the terms are taken. This also'

holds in the case of algebraic quantities.

Thus a — 6 + c is equivalent to a -\- c — b, for in the first

of the two expressions b is taken from a, and c added to the

result ; in the second c is added to a, and b taken from the

result. Similar reasoning applies to all algebraic expres-

sions. Hence we may write the terms of an expression in

any order we please.

Thus it appears that the expression a — b may be written

in the equivalent form — b -\- a.

To illustrate this we may suppose, as in Art. 20, that a

represents a gain of a dollars, and — & a loss of b dollars

:

it is clearly immaterial whether the gain precedes the loss,

or the loss precedes the gain.

25. Brackets ( ) are used, as in Arithmetic, to indicate

that the terms enclosed within them are to be considered

as one quantity. The full use of brackets will be con-

sidered in Chap. vi. ; here we shall deal only with the

simpler cases.

8 + (13 4- 5) means that 13 and 5 are to be added and

their sum added to 8. It is clear that 13 and 5 may be

added separately or together without altering the result.

Thus 8 + (13 + 5) = 8 4- 13 + o = 26.

Similarly a -\- {b -\- c) means that the sum of b and c is to

be added to a.

Thus a -\- (b -\- c) = a -\- b + c.

13
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8 4- (13 — 5) means that to 8 we are to add the excess of

13 over 5 ; now if we add 13 to 8 Ave have added 5 too much,
and must therefore take 5 from the result.

Thus 8 + (13 - 5) = 8 + 13 - 5 = 10.

Similarly a-\-(b—c) means that to a we are to add b, dimin-

ished by c.

Thus a + (b~c) = a-\-b — c . . . . (1).

In like manner,

a + b-c + (cl-e -/) = a + b - c -\- d - e -f. (2).

Conversely,

a + b-c-\-d-e -f= a + b-c^{d-e -/). (3).

Again, a — b-\-c = a + c — b, [Art. 21.]

= the sum of a and c — b,

= the sum of a and —b-\-c, [Art. 21.]

therefore a — b-{-c=a-\-{—b-{-c) . . . . (4).

By considering the results (1), (2), (3), (1), we are led to

the following rule

:

Rule. When an expression ivitliin brackets is preceded by

the sign -{-, the brackets can be removed without making any
change in the expressioyi.

Conversely : Any p)art of an expression may be enclosed

tvithin brackets and the sign -\- prefixed, the sign of every term

within the brackets remaining unaltered.

Thus the expression a — b-\-c—d-\-e may be written in

any of the following ways,

c( + (
— 6 + c-fZ + e)

a — b -\- (c — d 4- e),

a — ?> + c+ (— (? + e).

26. The expression a — {b -{- c) means that from a we are

to take the sum of b and c. The result will be the same
whether b and c are subtracted separately or in one sum.

Thus a — ip -{• c) = a — b — c.



SIMPLE BRACKETS. 15

Again, a — (b — c) means that from a we are to subtract

tlie excess of b over c. If from a we take b we get a — b\

but by so doing we shall have taken away c too much, and
must therefore add do a — b. Thus

a — (b — c) = a — b -\- c.

In like manner, a — b — (c —d — e) =^ a — b — c -{- d -\- e.

Accordingly the following rule may be enunciated

:

Rule. When an expression within brackets is ^yreceded by

the sign —, the brackets may be removed if the sign of every

term luithin the brackets be changed.

Conversely : Any part of an expression may be enclosed

within brackets and the sign — prefixed, provided the sign of
every term ivithin the brackets be changed.

Thus the expression a — b-\-c-\-d — e may be written in

any of the following Avays,

a — (-\-b — c — d-\-e),

a — b — {— c — d -\- e),

a — b -Y c — {— d -\- e).

We have now established the following results :

I. Additions and subtractions may be made in any order.

Thus a-\-b — c-\-d — e —f= a — c -\-b -\- d —/— e

= a — c —/+ d-{- b — e.

This is known as the Commutative Law for Addition and

Subtraction.

II. The terms of an expression may be grouped i)i any

manner.

Thus a + b-c + d-e -f= (a + l))-c-^(d - e)-f
= a +(6 - c) + (c? - e)~f= a + b -{c - d)-{e +/).

This is known as the Associative Law for Addition and

Subtraction.

ADDITION OF UNLIKE TERMS.

27. When two or more Wke terms are to be added together

we have seen that they may be collected and the result
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expressed as a single like term. If, however, the terms are

unlike, they cannot be collected. Thus in finding the sum of

two unlike quantities a and b, all that can be done is to

connect them by the sign of addition and leave the result in

the form a + h.

Also, by the rules for removing brackets, a-\-{— h)= a— h\

that is, the algebraic sum of a and — 6 is written in the

form a — h.

28. It will be observed that in Algebra the word sum
is used in a wider sense than in Arithmetic. Thus, in the

language of Arithmetic, a — h signifies that h is to be sub-

tracted from a, and bears that meaning only ; but in Algebra

it also means the sum of the two quantities a and — h

without any regard to the relative magnitudes of a and h.

Ex. 1. Find the sum of 3 a - 5 & + 2 c ; 2 « + 3 & - c? ; - 4 a 4- 2 &.

The sum = (3 a - 5 ?) + 2 c) + (2 rt + 3 6 - d) + ( - 4 a + 2 6)

=:3a-56 + 2c + 2a + 35-cZ-4rt + 26
= 3a + 2a-4a-56-l-36 + 26 + 2c-(Z
= a + 2 c — d,

by collecting like terms.

The addition is more conveniently effected by the fol-

lowing rule

:

Rule. Arrange the expressions in lines so that the like

terms may he in the same vertical columns: then add each

column, beginning ivith that on the left.

„ - 7 , o The algebraic sura of the terms in the fii*st

column is a, that of the terras in the second
-,a + • — c

column is zero. The sint^le tei-ms in the third
- 4 « -f 2 & and fourth columns are brought down without

a +2r-d change.

Ex. 2. Add together — 5ab + Gbc -7 ac ; 8 ab -\- Sac -2 ad; -2ab
+ 4tac + bad; be — 3 aft -f 4 ad.

-dab + Qbc-7 ac ^^ „ ^ ^^
„ , , o o 7 Here we first rearrange the expressions
8ab -\- Sac -2 ad

, ,.,
°, ^^

„ , ,
. , c J so that like terms are in the same ver-

-2ab +iac + bad
. ^ , ^ ^^

o , , ,
, A ji tical columns, and then add up each

-Sab -^ be -\- Aad , ' ^—;—

;

=-; z—

;

column separately.
~-2ab + lbc -\- t ad ^ '^
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EXAMPLES III. a.

Find the sum of

1. a + 2/j-3^; -3a + 5+2c;2rt-36 + c.

2. 3a + 26-c; -a + 3& + 2c;2a-6 + 3c.

3. -Sx-\-2y + z; x-Sy-h2z; 2x + y -3z.

4. -x + 2y + Sz; Sx- y + 2z; 2x-hSy -z.

5. 4« + 36 + 5c; - 2a + Sb -Sc ; a - b + c.

6. - 15 a - 19 6 - 18 c ; 14 a + 15 6 + 8 c ; a-h 51 ±9c.

7. 25 a - 15 & + c ; 13 « ~ 10 & + 4 c ; a + 20 6 - c.

8. -16a-105 + 5r; lOa + 56 + c; 6a + 55-c.
9. 5ax — 7by+cz; ax + 2by — cz; —oax+2by-\-o cz.

10. 20p + q- r
; p -20q-{- r; 2^ + q -20r.

Add together the following expressions

11. - 6ab -{-6bc-7 ca; 8 r/6 - 4 6c + 3 ca ;
- 2 «6 - 2 6c + 4 ca.

12. loa6-275c-6ca ; 14rt6-186c+10cff ; -49 a6+ 45 6c-3ca.

13. 5 a6 + 6c — 3 ca ; «6 — 6c + ca ; — a6 + 6c + 2 cd.

14. pq + qr - rp ;
- pq + qr + rp

; i)g - qr + rp.

15. x-\- y -\- z; 2x + Sy -2z; Sx- 4:y + z.

16. 2a-36 + c; 15 a- 21 6 -8c; 3a + 24 6 + 7c.

17. ixy — 9yz -\- 2 zx ;
— 25 xy -\-2\yz — zx ; 23 xy — lo yz + zx.

18. 17 a6 - 13 6c + 8 ca ; - 5 a6 + 9 6c - 7 ca ; 2 a6 - 7 6c - ca.

19. 47a;-63y + ^; -25x+15y-32; -22x + 48y + Ibz.

20. 23a-176-2c; -9a + 156 + 7c; -13a+36-4c.

DIMENSION, DEGREE, ASCENDING AND DESCENDING
POWERS.

29. Each of the letters composing a term is called a

dimension of the term, and the number of letters involved is

called the degree of the term. Thus the product abc is said

to be of three dimensions, or of the third degree; and a.v* is

said to be offive dimensions, or of the fifth degree.

A numerical coefficient is not counted. Thus ^o/W and

a-h^ are each of seven dimensions, or of the seventh degree.

But it is sometimes useful to speak of the dimensions of

an expression vrith regard to any one of the letters it in-
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volves. For instance, the expression Sa^b^c, which is of

eight dimensions, may be said to be of three dimensions

in a, of fonr dimensions in b, and of one dimension in c.

30. A compound expression is said to be homogeneous

when all its terms are of the same degree. Thus 8 a^ — a^b'^

4- 9ab^ is a homogeneous expression of six dimensions, or of
the sixth degree.

31. Different powers of the same letter are unlike terms ;

thus the result of adding together 2 x"^ and 3 x^ cannot be ex-

pressed by a single term, but must be left in the form

Similarly, the algebraic sum of 5 a^b^ — 3 ab^ and — b^ is

5 a^b^ — 3 ab^ — b^. This expression is in its simplest form
and cannot be abridged.

32. In adding together several algebraic expressions con-

taining terms with different powers of the same letter, it

will be found convenient to arrange all the expressions in

descending or ascending powers of that letter. This will be

made clear by the following examples.

Ex. 1. Add together 3 x^ + 7 + 6 x - 5 ic2 ; 2 x2 - 8 - 9 a:-

;

4x - 2x3 + 3x2 ; 3x3 - 9 X - x2 ; a- _ x2 - x3 + 4.

In writing the first expression we put in

3 x3 - 5 x2 + 6 X + 7 the first term the highest power of x, in

2 x2 — 9 X — 8 the second term the next highest power,
— 2x3 4-3x2 + 4x and so on till the last term, in which x does

3 x3 — x2 — 9 X not appear. The other expressions are

— x^ — x2 + X +4 arranged in the same way, so that in each

3 x3 — 2 x2 — 7 X + 3 column we have like powers of the same
letter. The result is in descending powers of x.

Ex. 2. Add together

3 a&2 _ 2 &3 4. ^3
. 5 a'2b -ab'^-3a^; Sa^ + 6b^; 9a'^b-2 a^ + ab^.

-2b^ + 3ab^ + a3

— «62 ^_ 5 (^ij) — Sa^ Here eacli expression is arranged

5 6^ -1-8 a^ according to descending powers of 6,

a&2 _|_ Q^2b — 2a^ and ascending powers of a,

" Sb^ + S ab"- + 14 a-'h + 4 a^
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EXAMPLES III. b.

Find the sum of the following expressions :

1. 2 rt6 + 3 ac + 6 ahc ;
— 5 a6 + 2 6c — -5 ahc ; 3 «& — 2 6c — 3 «c.

2. 2 cc^ — 2 xi/ + 3 ?/2 ; 4 2/2 + 5 .r?/ - 2 x- ; a:- - 2 .i-y - 6 y'^.

3. 3 a- - 7 rt6 - 4 ?>2 ;
- 6 «2 + 9 ^^^ _ 3 &-2 . 4 ^2 _^ (-(/, ^ 5 ^2.

4. a;2 + a:y - if- ;
- ^^ .|_ ^^ + ^2 . _ ^2 _^ ^^. ^ ^2_

5. — X^ — 3 a;?/ + 3 ^^ ; 3 ^^ + 4 ^py _ 5 2/2 ;
;>;2 4- x^ + 2/2.

6. x3 - x2 + X - 1 ; 2 x2 - 2 X + 2 ;
- 3 x^ + 5 x + 1.

7. 2 x^ — x2 — X ; 4 x^ + 8 x2 + 7 X ;
— 6 x^ — 6 x'^ + x.

8. 9x2-7x + 6; -14x2+15x-6; 20x2-40x-17.

9. 10 x3 + 5 X + 8 ; 3 x^ - 4 x'^ - 6 ; 2 x'^ - 2 x - 3.

10. a^ — ah -\- he ; ah -{- h^ — ac; ac — he -i- c^.

11. 5 a3 - 3 c3 + # ;
6'^ - 2 a^ + 3 d^ 4 c3 _ 2 «3 - 3 #.

12. 6x3 - 2x 4- 1 ; 2x3 + X + 6 ; x2 _ 7x3 + 2 x - 4.

13. rt3_^2 + 3^. 3^3 _^ 4^2+ 8«; ba^ - Qa"^ -l\ a.

14. x2 + ?/2 - 2 x?/ ; 2 ^2 _ 3 ^2 _ 4 y-.
. 2 x2 _ 2 ^-2 - 3 x^.

15. x3 — 2 ?/3 + X ; ?/3 — 2 x3 + ?/ ; a;2 _^ 2 ?/2 — x + ?/3.

16. x3 + 3 x2?/ + 3 xif ; -'Sx-y -6 x?/2 - x3 ; 3 xhj + 4 x?/2.

17. a3 4- 5 rt?^2 4. //i
. 53 _ 10 ah- - a^ ; 6 aV^ - 2 63 + 2 a%.

18. x5 - 4 x4?/ - 5 x3^3 . 3 x4y 4- 2 x3?/3 - 6 x?/* ; 3 x3y3 4- 6 x?/4 - ?/5.

19. a3 _ 4 a'^jy 4. e a6c ; orh - 10 a6c + c3 ;
63 + 3 ^^2^ 4. ^^c.

20. x3 - 4 yi^y + 6 xy2 . 2 x2y - 3 x?/2 + 2 y3 . yS _|_ 3 ^2^ 4. 4 ^^2.

Add together the following expressions :

21. ia-i6;-« + f6;fa-6.
22. -i«-i6; -f a + f6; -2a- 6.

23. - 2a + f c; - ia-26; |6-3c.

24.. - -V a - -V c ; 2 a - 3 6 ;
-U- & - c

25. f X2 + i X?/ - ^ 2/2 ;
- X2 - I X?/ + 2 ?/2

; I x2 - X?/ - I ?/2.

26." 3 a2 _ 2
f^^, _ ^ 52 . _ 3 (^2 + 2 a6 - 1 62

;
-

f a2 - ah + 62.

27. fx2-ix2/+f'V?/2; -|x2 + i|x?/-2/2; 1:^2 -x?/ + i 2/2.

28. - f x3 4- 5 «x2 - f a^x ; x3 - ^ (2x2 4- 1 ^2-;^ . _ ^ ^3 + | a^x.

29. f x2 - f x?/ - 7 2/2
; f X2/ + -V-2/2 ;

- f x2 4- 4 2/2.

30. i a3 __ 2 a26 - f 63
; f ^26 - | a62 4- 2 63 ; - |# + ^62 4- \ 63
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SUBTRACTION.

33. Subtraction is the inverse of Addition. The simplest

cases have been considered under the head of addition of

like terms, of which some are negative. [Art. 23.]

Thus 5a-3a= 2 a,

3 a — 7 a = — 4: a,

— 3a — 6a = — da.

Also, by the rule for removing brackets [Art. 2G],

3 a — (— S a)= 3 a -\- S

a

= 11 a,

and — 3 a — (— S a)= - 3 a + S

a

SUBTRACTION OF UNLIKE TERMS.

34. The method is shown in the following example

:

Ex. Subtract Sa — 2b — c from 4 a — 3 & + 5 c.

The result of subtraction = ia — Sb-{-5c—(oa — 2b — c)

= 4a-36 + 5c-3a + 2& + c

= 4a-3rt-3 6 + 2& + 5c + c

= a-b -\-Qc.

It is, however, more convenient to arrange the work as follows, the

signs of all the terms in the lower line being changed.

4«-36 + 5c
- 3 a + 2 7> + c

by addition a — ?> + 6 c

Rule. Chavge the sign of every term in the expression to

he subtracted, and add it to the other expression.

Note. It is not necessary that in the expression to be subtracted

the signs should be actually changed ; the operation of clianging signs

ought to be performed mentally.
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EXAMPLES III. d.

From

1. 3x^ - 5 y^ + 8 xz take - 4 x^ + 2 ?/^ - 10 xz.

2.-8 x-^/2 + 15 x3?/ + 13 xi/ take 4 x2?/2 + 7 x^?/ - 8 xy^.

3. _ 8 + 6 a6 + a^62 take 4 - 3 «6 - 5 a'^h'^.

4. «25c + h-ca + c2a& take 3 a%c - 5 &%« - 4 d^ah.

5. _ 7 ^26 + 8 a62 + cd take 5 a^^ _ 7 «5'2 ^ e ^d.

6.-8 x^y + 5 X2/2 - x2?/2 take 8 x^^/ - 5 a:?/^ + x:hf.

7. 10 a262 + 15 a&2 + g a^h take - 10 ^2^2 + 15 (^52 _ g a%.

8. 4x2 - 3 X + 2 take - 5 x2 + 6 x - 7.

9. x3 + 11 x2 + 4 take 8 x2 - 5 x - 3.

10. - 8 ^2x2 4. 5 x2 + 15 take 9 a2x2 _ 8 x2 - 5.

Subtract

11. x3 - x2 + X + 1 from x^ + x2 - x + 1.

12. 3 x^2 _ 3 r^2y + x3 - ?/3 from x^ + 3 x2?/ + 3 x?/2 + y^.

13. &3 + c3 - 2 ahc from a^ + ft^ _ 3 «?>c.

14. 7 x?/2 - ?/3 - 3 x2y + 5 x3 from 8 x^ + 7 x2?/ - 3 x^2 _ ^3^

15. ^4 _^ 5 _f. ;^ _ 3x3 from 5 x* - 8x3 - 2 x2 + 7.

16. a3 _j. 53 _^ c3 - 3 a6c from 7 a?>c - 3 «3 ^ 5 53 _ ^3.

17. 1 — X + x^ — x"^ — x3 from x* — 1 + x — x2.

18. 1 a"^ -^c(? + ^a^ + a from «2 _ 5 ^^3 _ 7 + 7 ^^5.

19. 10 ci^h + 8 a&2 _ 8 a3&3 _ &4 from 5 a'h -6ab^-l a^b^.

20. a3 -63 + 8 ah'^ - 7 a2?, from - 8 a&2 + 15 a'^b + &3.

From

21. i a;2 - i x?/ - I «/2 take - | x"^ -\- xy - y^.

22. I a2 _ I ^ _ 1 take - |a2 + « - i.

23. ix2 - ix + i take 1 x - 1 + i x2.

24. f x2 - f «x take i - i
^"^ - f ci^-

25. f x3 - A x?/2 - ?/2 take | x22/ _ | ?/2 _ 1 xy2.

26. i a'^ - 2 ax2 - i a2x take i a^x + ^ a^ - | ax2.

35. AVe shall close this chapter with an exercise contain-

ing miscellaneous examples of Addition and Subtraction.
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MISCELLANEOUS EXAMPLES I.

1. To the sum of 2 a— 36 — 2c and 2 6 — a + 7 c add the sum of

a - 4 c + 7 6 and c - 6 6.

2. From 5 x^ + 3 x — 1 take the sum of 2 x — 5 + 7 x^ and 3 x"^ +
4 — 2 x^ + X.

3. Subtract 3 a — 7 a^ + 5 «2 from the sum of 2 + 8 a- — a^ and
2 «3 - 3 a2 + a _ 2.

4. Subtract 5 x"^ + 3 x — 1 from 2 x^, and add the result to

3x2 + 3x-l.

5. Add the sum of 2 y — Sy^ and 1 — 5 ?/3 to the remainder when
1 — 2y'^ -}- yis subtracted from 5 y^.

6. Take x"^ — y^ from 3 x^/ — 4 ?/2, and add the remainder to the

sum of ixy — x^ — 3 y'^ and 2 x^ + 6 ?/2.

7. Find the sum of 5a — 76 + c and 3 6 — 9 «, and subtract the

result from c — 4 6.

8. Add together 3x2 — 7 x + 5 and 2x3 + 5x — 3, and diminish

the result by 3 x^ + 2.

9. What expression must be added to 5 x^ — 7 x + 2 to produce

7 x2 - 1 ?

10. What expression must be added to 4 x^ — 3 x^ + 2 to produce

4x3 + 7x-6?
11. What expression must be subtracted from 3 « — 5 6 + c so as

to leave 2a — 46 + c?

12. What expression must be subtracted from 9x-+ llx — 5 so

as to leave 6x-^— 17x + 3?

13. From what expression must 11 a^ — 6 ab — 7 6c be subtracted

so as to give for remainder 5 a^ + 7 a6 + 7 6c ?

14. From what expression must 3 a6 -\- b he — 6 ca be subtracted so

as to leave a remainder 6 ca — 5 6c ?

15. To what expression must 7 x^ — x^ — 5 x be added so as to

make 9x3-6x-7x2?
16. To what expression must 5 a6 — 11 6c — 7 ca be added so as to

produce zero ?

17. If 3x2 — 7x + 2 be subtracted from zero, what will be the

result ?

18. Subtract 3x3 — 7 x + 1' from 2 x^ — 5 x — 3, then subtract the

difference from zero, and add this last result to 2 x^ — 2 x^ — 4.

19. Subtract 3 x- — 5 x 4- 1 from unity, and add 5 x^ — 6 x to the

result.
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CHAPTER IV.

Multiplication.

36. Multiplication in its primary sense signifies repeated

addition.

Thus 3x4 = 3 taken 4 times

= 3 + 3 + 3 + 3.

Here the multiplier contains 4 units, and the number of

times we take 3 is the same as the number of units in 4.

Again a x b = a taken b times

= a-\-a -^a + •••, the number of terms being b.

Also 3x4 = 4x3; and so long as a and b denote pos-

itive whole numbers, it is easy to show that a x b = b x a.

37. When the two quantities to be multiplied together are

not positive whole numbers, we may define multiplication as

an operation performed on one quantity which ivhen ^jerformed

on unity produces the other. For example, to multiply 4 by f

,

we perform on f that operation which when performed on

unity gives
-f-;

that is, we must divide |- into 7 equal parts

and take 3 of them. Now each part will be equal to
,

<-> X 7

4x3
and the result of taking 3 of such parts is expressed by

5x7

Hence r x - = -^
—-•

5 7 5x7
24
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Also, by the last article,

4x3 ^ 3x4 ^3,,4
5x7 7x5 7 5

• 5'^7~7'^5

The reasoning is clearly general, and we may now say

that a X h= b X a, where a and b are any positive quanti-

ties, integral or fractional.

The same is true for any number of quantities, hence the

factors of a product may be taken in any order. This is the

Commutative Law for Multiplication.

38. Again, the factors of a product may be grouped in any

way we please.

Thus abed = axbxcxd
= (ab) X (cd) = a X (be) x d = a x (bed).

This is the Associative Law for Multiplication.

39. Since, by definition, a^ = aaa, and a^ = aaaaa,

.'. a^ X a^ = aaa x aaaaa = aaaaaaaa = a^ = a^+^

;

that is, the index of a letter in the product is the sum of its

indices in the factors of the product. This is the Index Law
for Multiplication.

Again, 5 a^ = 5 aa, and 1 a^ = 1 aaa.

.'. 5 a^ X 7 a^ = 5 X 7 X aaaaa = 35 a^.

When the expressions to be multiplied together contain

powers of different letters, a similar method is used.

Ex. 5 a362 X 8 a%x^ = 5 aaabb x 8 aabxxx = 40 a^b^x^.

Note. The beginner must be careful to observe that in this proc-

ess of multiplication the indices of one letter cannot combine in any
way until those of another. Thus the expression 40a^b^x^ admits of

no further simplitication.
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40. Rule. To multiply two simple expressions together,

multiply the coefficients together and prefix their product to the

product of the different letters, giving to each letter an index

equal to the sum of the indices that letter has in the separate

factors.

The rule may be extended to cases where more than two
expressions are to be multiplied together.

Ex. 1. Find the product of x^, x^, and x^.

The product = x^ x x^ y. x^ = x^+s x x^ = xr+^+^ = x^^.

The product of three or more expressions is called the

continued product.

Ex. 2. Fmd the continued product of 6x^y^, Sij-z'^, and Sxz^.

The product = 5 x:^ x 8 ij'h^ xSxz^ = 120 xh/z^.

MULTIPLICATION OF A COMPOUND EXPRESSION BY
A SIMPLE EXPRESSION.

41. By definition,

(a + b) m = m -\- m -\- m-\- ••- taken a + b times

= (»i + m -\-m-\- '•' taken a times),

together with (m -\-7n -\-m -\ taken b times)

= am + bm (1).

Also (a — b) m = m -\- m -f m-\- • • • taken a — b times

= {in -f- m -\- m -\- ••• taken a times),

diminished by (m -\-m-\-m -\- ••• taken b times)

= am — bm (2).

Similarly, {a — b-\-c)m
= am — bm + cm.

Hence the 2)roduct of a compound expression by a single

factor is the algebraic sum of the partial products of each term

of the compound expression by that factor. This is known as

the Distributive Law for Multiplication.



MULTIPLICATION. 27

Ex. 3(2 « + 3 ?> - 4 c) = G rt + 9 6 - 12 c,

(4 .x2 - 7 ?/ - 8 ^3) X 3 xif = 12 Thf - 21 xy^ - 24 xy^^s.

Note. It should be observed that for the present «, 5, c, «i de-

note positive whole numbers, and that a is supposed to be greater

than 6.

EXAMPLES IV. a.

Find value of

1. 5x2x7x5. 6. 2«&cx3«c3. 11. xhfxQa-x^.

2. 4«3x5a8. 7. 2a353x2a3&3. 12. ahc x xyz.

3. 7 a6 x 8 a352. 3, 5 ^i^i ^ 2 «. 13. 3 a^b'x'^ x 5 a^bx.

4. G X//2 X 5 x^ 9. 4 «2;>3 X 7 a^ 14. 4 a^bx x 7 62x4.

5. 8 a% X &5. 10. 5 a'^b^ x x'?/2. 15. 5 «2x x 8 ex.

Multiply

16. 5x3^/3 by 6«3a;3. 21. 5x + 3?/by2x2.

17. 2x2^/ by x^. 22. «2 ^ ^2 _ ^2 by a3&.

18. 3 «3ic4^7 by ^2x5^9. 23. he + ca - «& by a?>c.

19. ab + 6c by a^. 24. 5 «2 ^ 3 ^-2 _ 2 c2 by 4a26c3.

20. 5 «6 - 7 6x by 4 a2;,a:3. 25. 5 x2?/ + ar?/2 _ 7 .^2^2 by 3 x'^.

MULTIPLICATION OF COMPOUND EXPRESSIONS.

42. If in Art. 41 we write c + cZ for m in (1), we have

(a + 6)(c + f?) = «(c + d)+ 5(c + d)

= (c-\- d)a 4- (c + fZ)^ [Art. 37.]

= ac + ad -\-bc -\- bd.

Again, from (2)

(a - b)(c + d)= a(c + d)- b{c + d)

= {G + d)a-{c + d)b.

— ac + ad — (be + bd)

= ac -\- ad ~bc — bd.

Similarly, by writing c — d for m in (1)

(rt + &)(c - d) = a{c - d) + b(c - rZ)

= (c-fZ)a+(c-f/)6

= ac — ad -\- bc~ bd.
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Also, from (2)

(a -b)(c- d) =a(c- d) -b{c-d)
= (c-d)a-(c-d)b
= ac — ad — (be — bd)

= ac — ad — bc-{- bd.

If Tve consider eacli term on the right-hand side of this

last result, and the way in which it arises, we lind that

(-\-a)x(+c)=-{-ac,

(-b)x(-d)=-^bd,

(-b)x(-^c) = -bc,

(-\-a)x{-d) = -ad.

These results enable us to state what is known as the

Rule of Signs in multiplication.

Rule of Signs. The product of two terms icith like signs is

positive; the product of two terms icith unlike signs is neg-

ative.

43. The rule of signs, and especially the use of the nega-

tive multiplier, will probably present some difficulty to the

beginner. Perhaps the following numerical instances may
be useful in illustrating the interpretation that may be

given to multiplication by a negative quantity.

To multiply 3 by — 4 we must do to 3 what is done to

unity to obtain — 4. Now — 4 means that unity is taken

4 times and the result made negative; therefore 3 x(— 4)
implies that 3 is to be taken 4 times and the product made
negative.

But 3 taken 4 times gives -f 12.

.-. 3 x(-4)=-12.
Similarly, — 3 x — 4 indicates that — 3 is to be taken 4

times, and the sign changed ; the first operation gives — 12,

and the second + 12.

Thus (_3)x(-4)=-f-12.
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Hence, multiplication by a negative quantity indicates that we

are to proceed just as if the multiplier were positive, and then

change the sign of the product.

44. ]S"oTE ox Arithmetical axd Symbolical Algebea.

Arithmetical Algebra is that part of the science wliicli deals

solely with symbols and operations arithmetically intelli-

gible. Starting from purely arithmetical definitions, we are

enabled to prove certain fundamental laws.

Symbolical Algebra assumes these laws to be true in every

case, and thence finds what meaning must be attached to

symbols and operations which under unrestricted conditions

no longer bear an arithmetical meaning. Thus the results

of Arts. 41 and 42 were proved from arithmetical definitions

which require the symbols to be positive whole numbers,

such that a is greater than h and c is greater than d. By
the principles of Symbolical Algebra we assume these re-

sults to be universally true when all restrictions are removed,

and accept the interpretation to which we are led thereby.

Henceforth we are able to apply the Law of Distribution

and the Eule of Signs without any restriction as to the

symbols used.

45. To familiarize the beginner with the principles we
have just explained we add a few examples in substitutions

where some of the symbols denote negative quantities.

Ex. 1. If « = — 4, find tlie value of a^.

Here a^ = {- 4)^ =(- -4) x (- 4) x (- 4) = - 64.

Ex. 2. If a = - 1, & = 3, c = - 2, find the value of - 3 a^hc^.

Here _ 3a45c3 =_ 3 x (- l)^x 3 x (- 2)^

z::-3 X 1 X 3 x(-8)= 72.

If a. =-2,
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If a = - 4, 6 = - 3, c = - 1, /= 0, :/; = 4, ?/ = 1, find the value of

21. Sa^+bx-4: cy. 24. 3 a^^y^ - 5 &% - 2c\

22. 2 «?>2 _ 3 &c2 + 2/x. 25. 2 a^ - 3 63 + 7 c?/i.

23. fa^ -2b^- cx^. 26. 3 b^ - 4 &-/ - 6 c%.

27. 2V(«c)-3V(^y) + V('->'c').

28. 3 V(acx) - 2 V(?>'^y) - 6 V(t%).

29. 7V(a-^)-3V(^'c2)+5V(/-':K).

30. 3 cV(3 6c) - 5 V(4 c'V') - 2 cy V(3 ^c^).

46. The following examples further illustrate the rule of

signs and the law of indices.

Ex. 1. Multiply 4 « by - 3 6.

By the rule of signs the product is negative ; also 4 a x 3 6 = 12 ab.

.-. 4a x(-36) = -12«6.

Ex. 2. Multiply — 5 abH by - «6%.

Here the absolute value of the product is 5 a-b^xr^ and by the rule

of signs the product is positive.

. •. ( - 5 abH) X ( - ab'^x) = 5 a%H'^.

Ex. 3. Find the continued product of 3a26, — 'i.a^^^ — ab*.

o 91, / o q^ox a -^j.^
This result, however, may be

^ written down at once ; for

^ ^ ^ ^ 3 a26 X 2 a^ft^ x aft* = 6 a^ft^

Thus the complete product is 1 -, .-, ^ ^ • ^1

g
and by the rule of signs the re-

quired product is positive.

Ex. 4. Multiply a^ _ 5 ^25 _ 4 ab'^ by - 3 «62.

The product is the algebraic sum of the partial products formed

according to the rule enunciated in Art. 40
;

thus (6 «3 _ 6 a2j) _ 4 ab^) x (- 3 ab'^) = - 18 a^b'^ + 15 a^b^ + 12 a^b*.

EXAMPLES IV. c.

Multiply together

1. ax and - Sax. 5. - abed and - 3 a-b^c^d^.

2.-2 abx and - 7 a6x. 6. :<;*/;«; and - 5 x~y^z.

3. a2^ and - a62. 7. Sxy + 4:rjz and - 12 xyz.

4. 6 x2y and - 10 xy. 8. a6 - 6c and a26c3.
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9. -x-y - z and - 3 x. 12.-2 a% - 4 a6'^ and - la%^-.

10. a- - l)^ + c- and ahc. 13. 5 x'^?/ - 6 x?/^ + 8 x2^2 and 3 xy.

11. — ah + he — ca and — ahc. 14. — 7 xhj— 5 x?/3 and — ^xhj^.

15. — 5 x?/--s + 3 xyz^ — 8 x^?/^: and xyz.

16. 4 x2y2s2 - 8 xyz and - \2x^yz^. 18. 8 x?/;^ - 10 xhjz^ and - x?/^.

17. - l^xy^ - 15x2?/ and - Ix^y^. 19. a6c - a''-hc - ah'^c and - ahc.

20. — a^^c + b'^ca — ckib and — ah.

Find the product of

21. 2« -36 + 4c and - f a. 23. |« - ^6 - c and f «x.

22. 3 X - 2 y - 4 and - | x. 24. f «2;^2 _ | ^^3 and - | a^x.

25. -
f a2ic2 and -

f
^2 ^ ^;;g _ 3 ^2^

26. - I xy and - 3 x2 + f ;;t-y. 27. - | x3?/2 and - i- x2 + 2 ?/2.

47. The results of Art. 41 may be extended to the case

where one or both of the expressions to be multiplied

together contain more than two terms. For instance

(a — 6 + c) m = am — bm -\- cm
;

replacing m hj x — y, we have

(a - & + c)(x -y)= a(x - y)- b(x - 7/)+ c(x - y)

= {ax - ay)- (bx - bij)+ (ex - cy)

= ax — ay — bx + by + ex — cy.

48. These results enable us to state the general rule for

multiplying together any two compound expressions.

Rule. Multiply each term of the first expression by each

term of the second. When the terms multiplied together have

like signs, prefix to the product the sign -{-, ivhen unlike prefix

— ; the algebraic sum of the particd products so formed
gives the complete product.

This process is called Distributing the Product.

Ex. 1. Multiply X + 8 by X + 7.

X + 8

X + 7

x2+ 8x
+ 7x + 56

by addition x- + 15x + 56
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Note. We begin on the left and work to the right, placing the

second result one place to the right, so that like terms may stand in

the same vertical column.

Ex. 2. Multiply 2 ./: - 3 ^ by 4 x - 7 y.

2x -Sy
ix - 7 y

8 x2 - 12 :nj

- 14 xy +21 y2

by addition 8 x- —2(jxy + 21 y^

EXAMPLES IV. d.

Find the product of

1. x+oandx + lO. 21. 2x-3andx + 8,

2. X + 5 and x - b. 22. 2 x + 3 and x - 8.

3. X - 7 and x - 10. 23. x - 5 and 2x - 1.

4. X - 7 and x + 10. 24. 2 x - 5 and x - 1.

5. X + 7 and x - 10. 25. 3 x - 5 and 2 x + 7.

6. X + 7 and x 4- 10. 26. 3x + 5 and 2x - 7.

7. X + 6 and x - 6. 27. 5 x - 6 and 2 x + 3.

8. X + 8 and x - 4. 28. 5 x + 6 and 2 x - 3.

9. X - 12 and x - 1. 29. 3 x -by and 3 x + 5 y.

10. X + 12 and x - 1. 30. 3 x - 5 y and ^x -by.

11. X - 15 and x + 15. 31. a -2b and « + 3 6.

12. X - 15 and - x + 3. Z2. a - 7 b and a + Sb.

13. ^ X - 2 and - x - 3. 33. 3a - 6 6 and a - Sb.

14. _ X + 7 and x — 7. 34. a — 9b and ^ + 5&.

15. _ y^ 4- 5 and - x - 5. 35. x+ a and x - b.

16. X - 13 and x + 14. 36. x- a and x + 6.

17. X - 17 and x + 18. 37. x - 2 a and x + 3 6.

18. X + 19 and x - 20. 38. ax - by and ax + by.

19. _ X - 16 and - x + 16. 39. xy - ab and xy + ab.

20. - X + 21 and x - 21. 40. 2pg - 3 r and 2j?g + 3 r.
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49. We shall now give a few examples of greater

difficulty.

Ex. 1. Find the product of ox~ — 2x — o and 2 a; — 5.

Zx- — 2x — 5 Each term of the first expression is mul-

2 _ r tiplied by 2 x, the first term of the second
-7—^ T-^—7777- expression ; then each term of the first

,, \[ ^. expression is multiplied by — 5 ; like terms
— o.r + X + -o

^^g placed in the same columns and the
6 xJ^ - 19 x2 + 25

results added.

Ex. 2. Multiply a-b + Schja-\-2b

a - & + 3 c

a + 2b

a- — o.b + 3 «r

2ab - 2 ?>2 + 6 be

a? + a?) + 3 r/c — 2 5- + 6 be

When the coefficients are fractional, we use the ordinary

process of Multiplication, combining the fractional coeffi-

cients by the rules of Arithmetic.

Ex. 3. Multiply 1 «2 _ 1 «7) + 1 &2 by \a^\b.
ia2- \ab +f?)2
ha + \b

+ i«25_ irt52+ 253

A d^b + i a?>2 + I 63

50. If the expressions are not arranged according to

powers ascending or descending of some common letter, a

rearrangement will be found convenient.

Ex. Multiply 2xz - z- + 2 X- - o yz -\- xy by x-y -{-2z.

2 3-2 + xy + 2 .r^ - 3 2/0 — 0-

X - y +2z
2 a;3 + a;2?/ + 2 x^^ - 3 xyz - xz-

— 2 x~y — 2 a-?/^' — xy- + 3 ?/-5r + yz"^

'ix^z + 2 xyz + 4 xz^ - 6 ^/^'^ - 2 z^

IX x-?/ -f- 6 x-2 — 3 X2/5 + 3 xz- — xy- + 3 y-z — 5 yz- —2z^



34 ALGEBRA.

EXAMPLES IV. e.

Multiply together

1. a + 6 + c and a + b — c.

2. a-2h + c and a -\-2b - c.

3. cfi - ah + 62 and d^ + ah + b^.

4. x'^ + 3 2/2 and x + 4 ?/.

5. x3-2a;2 + 8 and x + 2.

6. x^ - x^y^ + y^ and a;^ + 2/2,

7. a;2 + x'2/ + y^ and x — y.

8. «2 _. 2 ax + 4 a:2 and «2 + 2 ax + 4 x^.

9. 16 a2 + 12 a6 + 9 62 and 4 a - 3 6.

10. a^x — ax2 4- x^ — a^ and x -\- a.

11. x2 + X - 2 and x2 + x - 6.

12. 2 x3 - 3 x2 + 2 X and 2 x2 -f 3 x + 2.

13. - «5 4- ^45 _ ^^352 and - a-b.

14. x3 - 7 X + 5 and x2 - 2 x + 3.

15. a^ + 2 cfib + 2 r<62 and a2 _ 2 a6 + 2 62.

16. 4 x2 + G x?/ + 9 ?/2 and 2 x - 3 ?/.

17. x2 — 3 X2/ — 2/2 and — x2 + xy + ?/2.

18. 63 - a2&2 4. «3 and a^ + a^/^^ + ^3,

19. x2 - 2 x?/ + ?/2 and x2 + 2 xy + 2/^-

20. «6 + cd + «c + 6fZ and ab + cd — ac — bd.

21. - 3 a262 + 4 ^^3 + 15 a% and 5 ^2^,2 + ^^53 _ 3 ^4.

22. 27 x3 - 36 ax2 + 48 a2x - 64 a^ and 3 x + 4 «.

23. «2 _ 5 (-(5 _ ^2 and a- + 5 rt6 + 62.

24. x2 — x?/ + X + 2/^ + 2/ + 1 and x -\- y — \.

25. a2 + 62 + c2 - 6c - c« - ab and a + 6 + c.

.26. - x^y + ?/* + ^""^y^ + X* - X2/3 and x-\-y.

27. xi2 _ xV^ + a^^^* - a;3?/6 + y^ and x^ + y'^.

28. 3 a2 + 2 a + 2 a'5 + 1 + a* and a2 - 2 « + 1.

29. — ax2 + 3 axif — 9 ay^ and — ax — 3 a2/2.

30. - 2 x^y + 2/* + 3 x22/2 + X* - 2 xi/^ and x2 + 2 xy + y^.

31. ^a2 + ia + i and ]a- J.

32. ^ x2 - 2 X + } and ^ x + ] •
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33. f x^ + xy + i
y^ «ind \x — \ y.

34. I x2 - «x - f rt2 and f a;^ - ^ «x + i a^.

36. 1 x2 - f a; - I and J x2 + I X - f

.

36. f rtx + f x2 + 1^2 and f a2 + 3 ^2 _ 3
qj;;^.

Note. Examples involving literal, fractional, and negative expo-

nents will be found in the chapter on the Theory of Indices.

51. Products Written by Inspection. Although the result

of multiplying together two binomial factors, such as x-\-d>

and X — 7, can always be obtained by the methods already

explained, it is of the utmost importance that the student

shoidd learn to write the product rapidly by inspection.

This is done by observing in what way the coefficients of

the terms in the product arise, and noticing that they result

from the combination of the numerical coefficients in the

two binomials which are multiplied together ; thus

{x + 8) (.^• + 7)== a;2 + 8a^ + 7.x + m
= x^ + 15x4- 56.

(x- 8) (x - 7)= .X- - 8x - 7x + m
= .x2-15x + 56.

(x + 8) (x - 7)= .x2 + 8x - 7x - 56

= x^ + X — 56.

(x - 8) (x + 7)= .^•2 _ 8x + 7x - m
= x' — X — ^Q.

In each of these results we notice that

:

1. The product consists of three terms.

2. The first term is the product of the first terms of the

two binomial expressions.

3. The third term is the product of the second terms of

the two binomial expressions.

4. The middle term has for its coefficient the sum of the

numerical quantities (taken with their proper signs) in the

second terms of the two binomial expressions.
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The intermediate step in the work may be omitted, and

the products written at once, as in the following examples

:

(x-\-2)(x + 3)=x'-{-5x-^ 6.

(x - 3) (x + 4)= af-\-x- 12.

(x + 6) (x -c))=x^- 3x - 54.

(x -4.y)(x- 10y)=x^ - Uxy + 40/.

(x - 6?/) (x + 4?/)= x^ -2xy- 24/.

By an easy extension of these principles we may write

the product of any two binomials.

Thus (2x + 3y) (x - y)= 2x^ + 3xy-2xy- 3/
= 2x^-\-xy-3y\

(3x - 4.y) (2x + y)= 6x' -Sxy + 3xy - ^f
= 6x^ — 5xy — 4:y^.



MULTIPLICATION. 37

29. (3x+8)(3x-8). 33. (2x + 7 i/)(2x - 5y).

30. (2x-5)(2x-5). 34. (5x + 3rt)(5x - 3a).

31. (Sx-2i/)(3x + y). 35. (2x - 5«)(a^ + 5a).

32. (3x + 2?/)(3x + 2?/). 36. (2x + a)(2x + «).

MULTIPLICATION BY DETACHED COEFFICIENTS.

52. In the following cases we lessen the labor of multipli-

cation by using the Method of Detached Coefficients :

(i.) When two compound expressions contain but one

letter.

(ii.) When two compound expressions are homogeneous
and contain but two letters.

Ex. 1. Multiply 2 a;3 - 4^2 + 5»: - 5 by 3x2 + 4a: - 2.

Writing coef&cients only, 2- 4+ 5- 5

3+ 4- 2



CHAPTER V.

Divisiox.

53. When a quantity a is divided by the quantity h, the

quotient is defined to be that which when multiplied by b

produces a. The operation is denoted by a -r- b, -, or a/6;

in each of these modes of expression a is called the dividend,

and b the divisor.

Division is thus the inverse of multiplication, and

(a-r-b)x^ = a.

54. The Rule of Signs holds for division.

rpi 7 ctb a X b .

Thus ab -^ a — — = = b.

a a

J
— ab a x(—b) ,— ab -T- a = = ^^ ^ = — b.

a a

a)=
''^' ^ (-«)x(-6) ^ ^ab^(-a) — a — a

1 / \ — ab (— a) X b ,— ab -^(— a)= = -^^ ^ = b.— a —a
Hence in division as well as multiplication

like signs produce +,
unlike signs produce —.

55. Since Division is the inverse of Multiplication, it fol-

lows that the Laws of Commutation, Association, and Distri-

bution, which have been established for Multiplication, hold

for Division.



DIVISION. 39

DIVISION OF SIMPLE EXPRESSIONS.

56. The metliod is shown in the following examples

:

Ex. 1. Smce the product of 4 and x is la-, it follows that when 4x
is divided by x the quotient is 4,

or otherwise, 4 x h- x — 4.

Ex.2. Divide 27 a5 by 9 a-3. ^^ ^ ., t .

^- ^ J. U e remove from the divisor and
The quotient = ^f^ ^

^^ <-^aaaxi
^^^-^^^^^ the factors common to

„ ., both, as in Arithmetic.
1= 3 aa — 3 o}.

Therefore 27 «5 ^ 9 r/^ = 3 ffi,

Ex. 3. Divide 35 «-36-'c3 by 7 alf-c^.

rr>i i- 4. ^b nan . hh . err r - oThe quotient =— .'— = 5 a« . c = o «%.
1 a.hh. cc

We see, in each case, that the index of any letter in the

quotient is the difference of the indices of that letter in the

dividend and divisor. This is called the Index Law for

Division.

AYe can now state the complete rule

:

Rule. The index of each letter in the quotient is obtained

by subtracting the index of that letter in the divisor from that

in the dividend.

To the result so obtained prefix icith its proper sign the quo-

tient of the coefficient of the dividend by that of the divisor.

Ex. 4. Divide ^bn%h:^ by -Qcfihyi^.

The quotient = ( - 5) x «6-352-i^4-2

= — 5 a%xr-

Ex. 5. - 21 cfih'^ -^(-7 cfih'^) =Sb-

Note. If we apply the rule to divide any power of a letter by the

same power of the letter, we are led to a curious conclusion.

Thus, by the rule «3 ^ (^s ^ ^^s-s ^^ ^^0 .

but also 053^^3-^ _ 1_
«3

.-. rt'^ = l.

This result will appear somewhat strange to the beginner, but its

full significance will be explained in the chapter on the Theory of

Indices.
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DIVISION OF A COMPOUND EXPRESSION BY A SIMPLE

EXPRESSION.

57. Rule. To divide a compound expression hy a single

factor, divide each term separately by that factor, and take the

cdgehraic sum of the particd quotients so obtained.

This follows at once from Art. 40.

Ex.1. (9x-12y + 3z)-^-S=-Sx^4:ij -z.

Ex. 2. (36 a^b'^ - 24 a^b^ - 20 a^b'^) - 4 a^Z) = 9 a6 - 6 6* - 5 a-b.

Ex. 3. (2 x^ - bxy + ^x^-if^) -^ - ix = - ^x + lOy-Sxtf.

EXAMPLES V. a.

Divide

1. 3 x3 by x2. 15. - 50 ifx^ by - 5 x^y.

2. 27 X* hj - 9 x^ 16. x^-Sx^ + x by x.

3. - 35x6 by 7 x^. 17. x^ - 1 x^ + 4.^4 by x"^.

4. xV by x^y. 18. lOx^ - 8x6 + 3x* by xK

5. a^x^ by -a^x^. 19. 15x5-25x* by -5x3.

6. 12a6?,6c6 by -Sa^b'^c. 20. -24x6-32x^by -8x3.

7. - «5c9 by - ac3. 21. 34x^ _ 51x2^3 by n xy.

8. 15x5?/V by 5x^22. 22. a^ - ab - ac hy -a.

9. - 16 xhj^ by - 4 xy^. 23. ^3 _ ^^^ _ ^^-2^2 by a^.

10. - 48 a9 by - 8 a^. 24. 3 x3 - 9 x^y - 12 x^-^ by - 3 x.

11. 63a"68c3 by 9rt565c3. 25. 4xV^-8x3?/2+6x?/3 by -2x7/.

12. 7 a2&c by -la^bc. 26. | x^y'^ _ 3 ^3^4 by - |x3?/2.

13. 28a453 by -4^36. ^^. - f x2+ f xy + J^x by - f x.

14. 16 &2^x2 by - 2 xy. 28. - 2 a5x3 + | a^x* by | a3x.

DIVISION OF COMPOUND EXPRESSIONS.

58. We employ the following rule

:

Rule. 1. Arrange divisor and dividend according to ascend-

ing or descending poicers of some common letter.

2. Divide the term on the left of the dividend by the term

on the left of the divisor, and p>ut the residt in the quotient.
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3. Multiply the whole divisor by this quotient, and put the

product under the dividend.

4. Subtract and bring down from the dividend as many
terms as may be necessary.

Repeat these operations till all the terms from the dividend

are brought down.

Ex. 1. Divide x^ + 11 a; + 30 by x + 6.

Arrange the work thus :

x + 6)x-2 + lla: + 30(

divide x^, the first term of the dividend, by a-, the first term of the

divisor ; the quotient is x. Multiply the whole divisor by a;, and put

the product ocr + Qx under the dividend. We then have

x + 6)x2 + llx + 30(x

ic2+ Qx

by subtraction 5 x + 30

On repeating the process above explained we find that the next

term in the quotient is + 5.

The entire operation is more compactly written as follows :

a; + 6)^2 4- llx + 30(a; + 5

a;2+ Qx

5x + 30

5X + 30

The reason for the rule is this: the dividend may be

divided into as many parts as may be convenient, and the

complete quotient is found by taking the sum of all the par-

tial quotients. Thus a? -f 11 x -f 30 is divided by the above

process into two parts, namely, a.*^ -f- 6 x, and 5 x + 30, and
each of these is divided by a; + 6 ; thus we obtain the

complete quotient x + 5.

Ex. 2. Divide 24 x^ - 05 xy + 21 ?/2 by 8 x - 3 y.

8 X - 3 ?/)24 x2 - 65 X2/ + 21 if{^ x -ly.
24x2- 9xy

-56xi/ + 21i/2

-50x^/ + 21?/2
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EXAMPLES V. b.

Divide

1. xM-3x + 2 by x+ 1. 9. 4x- + 23 x + 15 by 4x + 3.

2. X- - 7 X + 12 by X - 3. 10. 6 x2 - 7 x - 3 by 2 x - 3.

3. a2 _ 11 a + 30 by a - 5. 11. 3 x^ + x - f4 by x - 2.

4. a2 - 49 a + 600 by a - 25. 12. 3 x2 - x - 14 by x + 2.

5. 3x2 + 10x + 3 by x + 3. 13. 6x2 - 31x + 35 by 2x - 7.

6. 2x2 + llx + 5 by 2x + 1. 14. I2a2-7ax-12x2 by 3a-4x.

7. 5x2 + llx + 2 by x + 2. 15. 15a2+i7 «:c_4a;2 by 3a+ 4x.

8. 2x2 + 17X + 21 by 2x + 3. 16. 12a2_ii ac-36c2 by 4 rt-9c.

17. -4x^-15^/2 + 96x2 by 12x- 5?/.

18. 7x3 + 96x2-28x by 7x-2. 20. 27xH9x2 -3x-10 by 3x-2.

19. 100x3-3x-13x2by3+25x. 2L 16a3_46«2+39a_9by8a-3.

59. The process of Art. 58 is applicable to cases in which

the divisor consists of more than two terms.

Ex. 1. Divide 6 x^ - x* + 4 x^ - 5 x2 - x - 15 by 2 x2 - x + 3.

15(3x3 + x2-2x-

5

2x2-
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60. Sometimes it will be found convenient to arrange the

expressions in ascending powers of some common letter.

Ex. Divide 2 a^ + 10 - 16 a - 39 a^ + 15 a^ by 2 - 4 « - 5 cA

2 - 4 a - 5 «2)10 - 1(3 a - 39 a2 4. 2 a^ + 15 (^4,^5 + 2 a - 3 a^

10 - 20 g - 25 a^

4 a - 14 a^ -f 2 #
4a- Sa^-\Oa^

- 6 a2 + 12 a3 + 15 ^i

- 6a'2+ 12a3+ 15 g^

61. When the coefficients are fractional^ the ordinary

process may still be employed.

Ex. Divide \x^ -\- yV xy^ + ^^ y^hj ^x + I y.

ix + iy)i^^ + i2^y^ + ikv^i^^^ - \^y + \y''-

- \ x'^y + ^\xy^
-

7-r
^^y ~ -9- xy-^

\xy'^ + ^^t

In the examples given hitherto the divisor has been exactly

contained in the dividend. When the division is not exact,

the work should be carried on until the remainder is of lower

dimensions [Art. 29] than the divisor.

EXAMPLES V. C.

Divide

1. x3 - a;2 - 9 X - 12 by x2 + 3 X + 3.

2. 2 ?/3 - 3 ?/2 - 6 2/
- 1 by 2 ?/2 _ 5 ?/ _ 1.

3. 6 m^ — m^ — 14 m + 3 by 3 7n^ + 4 to — 1.

4. 6 a5 - 13 a^-\-4.a^ + 3a^\)ySa^-2a^- a.

5. X* + x3 + 7 x2 - 6 X + 8 by a;2 + 2 X + 8.

6. a4 „ ^3 _ 8 a2 + 12 a - 9 by a'-2 + 2 rt - 3.

7. a-i + 6 a3 + 13 a2 + 12 a + 4 by a^ + 3 « + 2.

8. 2 X* - a;3 + 4 x2 + 7 X + 1 by x2 - X + 3.

9. x5-5x4 + 9x3-6x2-x+2 by x2-3x + 2.

10. x^ - 4 x* + 3 x3 + 3 x2 - 3 X + 2 by x2 - X - 2.
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11

12

13

14

15

16

17

18

19.

20.

21.

23.

24.

25.

27.

30^4 + Ilic3-82x2-5u: + 3by 2a:-4 + 3x2,

30 y + 9 - 71 ^3 + 28 y* - 35 ?/2 by 4 ?/2 _ 13 ^ + 6.

6 A;5 - 15^-* + 4 X;3 + 7 ^-2 _ 7 ^. + 2 by 3 A;3 - ^• + 1.

15 + 2 m^ — 31 ?/i + 9 m'^ + 4 m^ + w^ by 3 — 2 «i — ?)i'^.

2ic3-8ic + x4 + 12-7x2by x2 + 2 -3x. -

x5 _ 2x4 _ 4x3 + l9a;2 by x3 - 7 a: + 5.

192-0:4+ 128x + 4x2-8x3by 16 - x^.

. 14x4 + 45x3^ + 78XV 4- 45x?/3 + Uy^ by 2x2 + 5x?/ + 7 ?/2

X^ — X4?/ + X3y2 _ x^ if by x3 — X

x^ + x4?/ — x3?/2 + x3 — 2 x?/2 + 1/ by x2 + X?/ — ?/2.

69 by a3 _ ^a. 22. x^ - if by x2 + XIJ + y^.

x7 - 2 2/14 - 7 x5^4 _ 7 ^^12 4_ 14 ^3^8 by X - 2 2/2.

a3 + 3 a25 + 53 _ 1 + 3 «52 by a + 6 - 1.

x8 _ 2/8 by x3 + ^^y + x?/2 + ?/3. 26. ai2 _ ^12 by cfi - 62.

ai2 + 2 a6^,6 4. 512 by a4 4. 2 ^252 + 54.

28. 1 - a3 _ 8x3 - 6 ax by 1 - « - 2 x.

Find the quotient of

29. i a3 _ 9 ^2^ ^ _2^^x2 _ 27 x3 by 1 a - 3 x.

30. 27 «^ - T2 cfi + tV « - 6? ^y\o,-\'

31. f a2c3 + ^§3 a^ by A a2 ^ 1 q^c.

a^ — Iff ax4 by f a — I x.32.

33.

27

|«2 + ia + i^by fa^

34. 36x2 + i?/2+ 1 -4x2/-6x + i2/by6x-i2/-|•

62. Important Cases in Division. The following examples

in division may be easily verified ; tliey are of great im-

portance and should be carefully noticed.

iC" — y _
X -
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and so on ; the divisor being x — y, the terms in the quotient

all positive, and the index in the dividend either odd or even.

II.

a^ + if

x + y
xP + ?/^

x + y

^^_±yL = x^- x^y + xHf - ^y^ + xhf - xf + y\
x + y

= x^- xy + 7f,

x'^ — x^y + x'^y- — xy^ + y"^,

and so on ; the divisor being x + y, the terms in the quotient

alternately positive and negative, and the index in the divi-

dend alivays odd.

III.

x-\-y
x-y.

x + y
x^ — y^

V x + y

M-=Qi^ — o?y + xy'^ — y^,

x^ — x^y -\- Qt?y' — x^y^ -f ^11^ — ?/^?

and so on ; the divisor being x-\-y, the terms in the quotient

alternately positive and negative, and the index in the divi-

dend always even.

IV. The expressions v^^-y"", a)*^-?y^ x^-\-y^ ••. (Avhere

the index is even, and the terms hotU positive), are never

divisible by x-{-y or x — y.

All these different cases may be more concisely stated

as follows:

(1) x'^ -/" is divisible hy x -y ii n be any whole number.

(2) ;f» + /" is divisible by ;f + / if /? be any odd whole number.

(3) jf" -y^ is divisible by jf +/ if /; be any ej^e/? whole number.

(4) jr'' + /" is never divisible by x + / or jf — / when n is an even

whole number.

Note. General proofs of these statements will be found in Art. 106.
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DIVISION BY DETACHED COEFFICIENTS.

63. In Art. 52 we considered certain cases of compound
expressions in which the Avork of multiplication could be

shortened by using the Method of Detached Coefficients. In

the same cases the labor of division can be considerably

abridged by using detached coefficients, and employing an
arrangement of terms known as Horner's Method of Synthetic

Division. The following examples illustrate the method

:

Ex. 1. Divide 3ic5-8xt-5x3+26x2-28x+ 24 by ^3-2 a;2-4 a;+ 8.

3-
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Inserting literal factors, a^ -i-2 a^b + 3 a'^b^ + ab^ is the complete

quotient, and — 5 a^b* + 3 a%^ + «&•' is the remainder.

Explanation. The term ab^ in the divisor is missing, so we write

for the coefficient of this term in the column of figures on the left

of the vertical line. We add the columns as in Ex. 1, but as the

first term of the divisor is 2, im divide each sum by 2 before placing

the result in the line of quotients. We then use these quotients as

multipliers, the multiplicand being in each case — 3, 0, and 1, and
form the horizontal lines as in Ex. 1. Having obtained the required

number of terms in the quotient.^ the remainder is found by adding

the rest of the columns and setting down the results vjithotit dividing

by 2. By continuing the first horizontal line (dividend), as shown
in this example, we at once see what literal factors the remainder
must contain.

EXAMPLES V. d.

Divide :

1. a^ - 4 a"^ + 2 a^ -h ^ a + 1 hj cfi - 2 a - 1.

2. a* - 4 a^b + 6 ^252 + 54 _ 4 ^53 by «2 + ?,2 _ 2 ab.

3. «5 - 10 aH) + 16 «3?)2 _ 12 ^253 + rt/j4 + 2 65 by (a- by.

4. x^ - 2 6^4 4. 58 by x^ + bx"^ + b^x + b^.

5. x^ - 3 x'^y^ + Sxy^ — 6y^ by x"^ -4^xy -\- y^ to four terms in tlie

quotient.
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Removal axd Insehtion of Brackets.

64. We frequently find it necessary to enclose within

brackets i)art of an expression already enclosed within

brackets. For this purpose it is usual to employ brackets

of different forms. The brackets in common use are ( ),

II, [ ]. Sometimes a line called a vinculum is drawn

over the symbols to be connected ; thus a — b -\- c is used

with the same meaning as a —(b -\- c), and hence

a — b-\-c = a — b — c.

65. To remove brackets it is usually best to begin with

the inside pair, and in dealing with each pair in succession

we apply the rules already given in Arts. 25, 26.

Ex. 1. Simplify, by removing brackets, the expression

a-26-[4a-6&-{3«-c+(5a-26- 3a-c + 26)}].

Removing the brackets one by one, we have

a -2b -I4:a - 6b - {Sa - c-\-(5a -2b - Sa -\- c - 2 /j)}]

= a -2b -[4,a - Qb - {^a - c + 5a -2b - Za -\- c -2b]^

= a-2b-lia-Gb - Sa + c- 5a + 2b + oa - c + 2b]

= a-2b - 4« + 66+ 3«-c+ 6a -2b - Sa-\- c -2b
= 2 (7, by collecting like terms.

Ex. 2. Simplify the expression

-l-2x-{3y-(i2x-Sy) + (3x-2y)}-]-2xl

The expression =_[_2a; -{Sy-2x + Sy + Bx - 2y] -i- 2:>:]

= -[-2x-Sy + 2x-Sy - Sx-\-2y + 2 »:]

= 2x + Sy -2x + Sy -\-Sx-2y -2x
= x + 4y.

48
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EXAMPLES VI. a.

Simplify by removing brackets

:

1. a -(b - c)+ a+(b - c)+ b -(c + a).

2. «-[& + {<-«-(& + «)}]. 3. «-[2«-{3&-(4c-2a)}].

4. {a - (b - c)] + {& -(c - a)} -{c-(a - b)}.

5. 2«-(5&+[3c-a])-(5a- [6 + r]).

6. -{-[-(^a-b^cm 7. -(-(-(- x)))-(-(-y)).

8. -[«-{& -(c - «)}]-['> - {c -(« - 6)}].

9. -[-{-(& + c-«)}] + [-{-(c + a-6)}].

10. -5.r-[3?/-{2.r. -(2?/-a:)}].

11. -(-(-«))-(-(-(-:>-0)).

12. 3 a - [a + 6 - {« + ?; + c -(« + & + c + c?)}].

13. -2«-[3a: + {3c-(4y + 3.x + 2«)}].

14. Sx-l5y-{6z-(ix-7y)}^.

15. _[5.'*:-(ll2/-3x)]-[5^-(3.r,-6y)].

16. -[15x-{14?/-(150+12?/)-(lOx-15^)}].

17. 8.r. -{16?/-[3x-(12?/-x)-8?/]+4.

18. -lx-{z +(x- z)-(z -x)- z}-x^.

19. — [« + {a —(a — x) — (« + x) — «} — «]

.

20. - [« - {« + (x - a) -(x -«)-«}- 2 «]

.

66. A coefficient placed before any bracket indicates that

every term of the expression within the bracket is to be

multiplied by that coefficient.

Note. The line between the numerator and denominator of a

fraction is a kind of vinculum. Thus ^" ~
is equivalent to i(x — 5).

Again, an expression of the form y/{x + y) is often written vx + ?/,

the line above being regarded as a vinculum indicating the square root

of the compound expression x + y taken as a ivhole.

Thus \/25 + 144 = ^169 = 13,

whereas ^26 + ^144 = 5 + 12 = 17.

67. Sometimes it is advisable to simi^lify in the course of

the "work.
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Ex. Find the value of

84 -7[- llx-4{- 17.r + 3(8-"9 -5.r.)}].

The expression = 84 - 7 [- 11 x - 4{ - 17 x + 3 (8 - + 5x)}]

^ 84 - 7 [ - 11 .X - 4 { - 17 X + 3 (5x - 1)}]

:^84-7[-lla;-4{-17x+ 15x-3}]

= 84-7[- ll:c-4{ -2x-3}]
= 84-7[- llx-f 8x+12]

= 84-7[-3.r + 12]

= 84 + 21x-84
= 21 X.

AYhen the beginner has had a little practice, the number of

steps may be considerably diminished.

EXAMPLES VI. b.

Simplify by removing brackets :

1. « - [2 5 + {3 c - 3 « - (a + 6)} + 2 a - (?) + 3 c)].

2. « -I- 6 - (c + « - [?) + c - (« + 6 - {c + a - (6 + c - «)})]).

3. a -(?>-(')- [a - & - c - 2 {6 + c - 3 (c - a) - d}].

4. 2x-(Sy-4:z)-{2x- (3 y + 4 s)} - {3 ?/ - (4^ + 2 x)}.

5. b + c - (a -h b -[c -\- a - (b + c - {a + b -(c + a - 6)})]).

6. a-(b-c)-[a-b-c~2{b + c}-].

7. 3 a^ - [G a2 _ {8 &2 _ (9 c2 _ 2 «2)}]

.

8. 6 - (c - a) - [6 - « - c - 2{c + a - 3 (a - 6) - fZ}J.

9. _ 20 (« - d) + 3 (& - c) - 2 [6 + c + fZ - 3{c + fZ - 4 (rZ - a)}].

10. - 4 (a + cZ) + 24 (?) - c) - 2 [c + fZ + a - 3 (fZ + a - 4 (?) + c)}].

11. - 10(a + ?>)-[c+ rt + &-3{a + 2&- (c + «- 6)}]+ 4c.

12. a - 2 {b - c) -[- {- (ia - b - c - 2{a+6 + c})}].

13. 2(3&-5a)-7[rt-6{2-5(a-&)}].

14. 6 {a - 2 [6 - 3 (c + (Z)]} - 4{a - 3 [5 - 4 (c - (Z)]}.

15. 5 {a - 2 [a - 2 (a + x)]} - 4{« - 2 [a - 2 (a + x)]}.

16. - 10 {rt - 6 [« - (6 - c)]} + 60 {Z) - (c + a)}.

17. - 3 { - 2 [- 4 (- «)]} 4- 5{ - 2 [- 2 (- «)]}.

18. _2{-[-(x-2/)]} + {-2[-(x-2/)]}.
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i9.H«-5('.-<.«-|{i(.-i)-i[«-f(.-^)]}.

20. 35
[

'^*-~^^^ - tV {3 X - f (7 X - 4
^)}J

+ 8 (2/ - 2 a;)

.

21. 3.[| («_ 5)_ 8 (^,--c)}-{^-'-^}-i{c-« -!(«-&)>

22. lx-^Qy-lz)-[x-{lx-ily~lz)}-Qy-^z)-].

INSERTION OF BRACKETS.

68. The converse operation of inserting brackets is im-

portant. The rules for doing this have been enunciated in

Arts. 25, 26 ; for convenience we repeat them.

Rule I. Ally part of an expression may be enclosed ivithin

brackets and the sign + prefixed, the sign of every term ivithin

the brackets remaining unaltered.

Ex. a — b-{-c — d — e = a — b+(c — d — e).

Rule II. Any part of an expression may be enclosed icithin

brackets and the sign — prefixed, provided the sign of every

term ivithin the brackets be changed.

Ex. a — b -\- c — d — e = a —(b — c) — (d + e).

69. The terms of an expression can be bracketed in various

ways.

Ex. The expression ax — hx 4- ex — aij + hy — cy

may be written (ax — hx) + (ex — ay) + (by — cy),

or (ax — bx + ex) — (ay — by + cy),

or (ax — ay) — (bx — by) + (ex — cy)

.

70. A factor, common to every term within a bracket,

may be removed and ]3laced outside as a multiplier of the

expression within the bracket.

Ex. 1. In the expression

ax^ - cx + 7 - dx^ -\-bx-c - dx^ -\-bx'^ -2x
bracket together the powers of cc so as to have the sign + before each

bracket.
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The expression = {aj^- (W) + (hx^- dx"^) + (bx -ex -2 x) + (7 - c)

= x3(« - d) + x^{b - d) + x{h - c - 2) + (7 - c)

= (a - cZ)x3 + (6 - d)x2 + (5 _ c - 2)x + 7 - c.

In this last result the compound expressions a — d, h —d^ b — c — 2

are regarded as the coefficients of x^, x'^, and x respectively.

Ex. 2. In the expression - a'^x - 7 a -]- ahj -\- S - 2x - ab bracket

together the powers of a so as to have the sign — before each bracket.

The expression = - (a% - a'^y) - (7 « -f «6) - (2 x - 3)

= _a\x-y)-aO + ^))-(^x-S)
= -{x-y)a^-0 + b)a-{2x-Z).

EXAMPLES VI. c.

In the following expressions bracket the powers of x so that the

signs before all the brackets shall be positive

:

1. ax* + 6x2 + 5 + 2 6x - 5 x2 + 2 X* - 3 x.

2. 3 6x2 - 7 - 2 X + «6 + 5 ax^ + ex - 4 x2 - bx^.

3. 2 - 7 x3 + 5 rtx2 - 2 ex + 9 ax3 + 7 X - 3 x'^.

In the following expressions bracket the powers of x so that the

signs before all the brackets shall be negative

:

4. «x2 + 5 x3 - «2x4 _ 2 6x3 - 3x2 - ^x*.

5. 7 x^ - 3 e2x - abx^ + 5 ax + 7 x^ - abcxK

6. 3 62x'^ - 6x - ax* - ex* - 5 e^x - 7 x*.

Simplify the following expressions, and in each result regi'oup the

terms according to powers of x :

7. ax3 - 2 ex - [6x2 _ ^^x - dx - (6x3 _)_ 3 ^^^2^^ _ (ex2 - 6x)].

8. 5 ax3 _ 7(6x - cx2) - {6 6x2 _ (3 ^^^2 ^_ 2 ax) -4 ex^}.

9. ax^ - 3 {- ax3 + 3 6x - 4 [i cx^ _ f(ax - 6x2)]}.

10. x5 - 4 6x* - i [12 ax - 4 1 3 6x* - of— - 6xA - | ax* 1 1.

71. In certain cases of addition, multiplication, etc., of

expressions which involve literal coefficients, the results

may be more conveniently written by grouping the terms

according to powers of some common letter.

Ex. 1. Add together ax^— 2 6x2+3, 6x— cx3-x2, and x^— ax24cx.

The sum = ax^ — 2 6x2 + 3 + 6x — cx^ — x"^ \- x^ — ax^ + ex

= ax^ - ex? + x^ - a.x2 - 2 6.x2 - x^ -\- bx -\- ex -\-

Z

z=.{a-e^ l)x3 _ (a + 2 6 + l)x2 + (6 + c)x + 3.
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Ex. 2. Multiply ay^ — 2 &aj + 8 c by px - q.

The product = (rr-x'^ — 2 5x + 3 c) (px - q)

= apx'^ — 2 bpx^ + o cpx — aqx^ + 2 &gx — 3 eg

= apx^ — (2 6^ + ag)x2 + (3 cp + 2 bq)x — 3 cq.

EXAMPLES VI. d.

Add together the following expressions, and in each case arrange

the result according to powers of x :

1. ax^ — 2 ex, bx^ — cx^, and cx^ — x.

2. X2 - X - 1, ax2 - 5x^ 6x + x\

3. «%^ — 5 X, 2 «x2 — 5 «x3, 2 X'5 — ?>x2 — ax.

4. ax'^ + ^)x — c, (/x — r — px^, x'^ + 2 x + 3.

5. px^ — qx, gx^ — px, g — x-^, px-^ + gx^-

Multiply together the following expressions, and in each case

arrange the result according to powers of x:

6. «x2 + bx + 1 and ex + 2. 9.2 x^ - 3 x - 1 and ?>x + c.

7. cx"-^ — 2 X + 3 and ax — b. 10. c/x^ — 2 ?>x + 3 c and x — 1.

8. ax- — bx — e and jjx + q. 11. px^ — 2 x — g and ax — 3.

12. x^ + «x2 — bx — c and x^ — «x2 — bx + c.

13. «x^ - x- + 3 X - ?> and ax^ + x'-^ + 3 x + &.

14. X* — ax^ - ?>x2 + ex + (? and x* + ax^ — bx^ — ex + d.

MISCELLANEOUS EXAMPLES II.

1. Find value of (a - b)- -\-(b - e)- + (a - b) -\- 2 e^ when a = 1,

& = 2, c = - 3.

2. Find the sum of 2 x, 3 x^, 5,-3 x^, - 4, x, - 6 x^, 8 x^,

arranging result in descending powers.

3. Diminish the sum of 6^ + 7 ^^ _ 5 and 4 52 _ 3 5 4. 7 by
1162 + 2.

4. Show that (l+x)2(l+ ?/2)-(l + x2)(l + ?/)2= 2 (x-y)(l-x?/).

5. Simplify {a + 6) (a + c) - (a - b) (a - c).

6. Subtract the sum of 3 wi^ — 4 ?>?, + 1 and on- — 3 m from
4 iH^ + 2 ?«2 _ 7 y,^

7. What expression must be taken from the sum of « + 3 &,

4 a2 — 5 «, b^ + 2 a, 2 a — 3 &2 in order to produce a^ — b'^?

8. Find value of a^+^c+d) IJI~\+d\ when «: :2, c= 0, f?= 8.
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9. Multiply a- -\- (b - cy by & + c + 1.

10. Divide 343 x^ + 512 y^ by 7 x + 8 ?/.

11. If a = 1, h =2, c = 3, d = 4, find the value of

« + [(6-c)(2,;-^)]-( V(2«^-&') _4,|

12. What number must be added to 2 x^ — 3 x^^ .f 6 to produce

7 X2 + I X?/2 - x2?/ + 5 ?

13. Simplify (X - 2/) - {3 x - (x + y)} + {(2 x - 3 y) - (x - 2 y)}.

U. Show that a (a - 1) (a - 2) (a _ 3) = («2 _ 3 ^^ + iy2 _ 1.

15. x* - 10 x2 + 9 ^ x2 - 2 X - 3.

16. Simplify 9 a - (2 /> - c) + 2 fZ - (5 a + 3 6) + 4 c - 2 rZ, and

find its value when « = 7, & = — 3, c = — 4.

17. Multiply 3 a-b - 4 ab^c + 2 a-^'-^c^ by - 6 aVy^c^ and divide

the result by 3 ab'^c^.

18. If a = - 1, /> = 2, c = 0, f? = 1, find the value of

ad-}- ac- a^ - cd + c^ - a-\-2c + a^b + 2 a^.

19. Find the sum of 3 a + 2 ?;, - 5 c - 2 rZ, 3 e + 5/, b - a -^ 2 d,

- 2 a - 3 & + 5 c - 2/.

20. Subtract ax^ — 4 from zero, and add the difference to the sum
of 2 x^ — 5 X and unity.

21. Multiply i x2 + i x?/ - 1 2/2 by j\ x^-\ xy + f 2/^.

22. Divide 6 a^-a'^b+ 2 a%'^+ lo a63+4 6* by 2 a2_3 ah+ ^ b^.

23. Simplify 5 x* - 8 x^ - (2 x^ - 7) - (x* + 5) + (3 x^ - x), and

subtract the result from 4 x* — x + 2.

24. Simplify by removing brackets 5[x — 4{x — 3(2x — 3x f 2)}]

.

25. If a = 1, 6 = 2, c = 3, and d = 4, find value of

(c + fi ^^ ^ ^bd(b + c + d-a)

26. Express by means of symbols

(1) 6's excess over c is greater than a by 7.

(2) Three times the sum of a and 2 6 is less by 5 than the product

of b and c.

27. Simplify

3«2_(4 a^b'^)-{2 0-2- (3 b-rr-)-2 b-B rt}-{5 b-7 a-ic^-b^)}.

28. Find the continued product of

x2 + x?/ + ?/2, x2 - x^/ + f, y^ - ofiy'^ + y^-



CHAPTER VII.

Simple Equations.

72. An equation asserts that two expressions are equal,

but we do not usually employ the word equation in so wide
a sense.

Thus the statement x-\-3-\-x = 2x-\-3, which is always

true whatever value x may have, is called an identical equa-

tion, or an identity. The sign of identity frequently used
is =.
The parts of an equation to the right and left of the sign

of equality are called members or sides of the equation, and
are distinguished as the right side and left side.

73. Certain equations are only true for particular values

of the symbols employed. Thus 3x= 6 is only true when
x = 2, and is called an equation of condition, or more usually

an equation. Consequently an identity is an equation which
is always true whatever be the values of the symbols in-

volved; whereas an equation, in the ordinary use of the

word, is only true for particular values of the symbols. In
the above example 3x = 6, the value 2 is said to satisfy the

equation. The object of the present chapter is to explain

how to treat an equation of the simplest kind in order to

discover the value which satisfies it.

74. The letter whose value it is required to find is called

the unknown quantity. The process of finding its value is

called solving the equation. The value so foinid is called

the root or the solution of the equation.

75. The solution of equations, and the operations sub-

sidiary to it, form an extremely important part of Mathe-

55
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matics. All sorts of mathematical problems consist in the

indirect determination of some quantity by means of its

relations to other quantities which are known, and these

relations are all expressed l3y means of equations. The
operation in general of solving a problem in Mathematics,

other than a transformation, is first, to express the con-

ditions of the problem by means of one or more equations,

and secondly, to solve these equations. For example, the

problem which is expressed by the equation above given

is the very simple question, '^ What is the number such

that if multiplied by 3, the product is 6 ? " In the present

chapter, it is the second of these two operations, the solu-

tion of an equation, that is considered.

76. An equation which involves the unknown quantity

in the first degree is called a simple equation.

The process of solving a simple equation depends upon

the following axioms

:

1. If to equals we add equals, the sums are equal.

2. If from equals we take equals, the remainders are

equal.

3. If equals are multiplied by equals, the products are

equal.

4. If equals are divided by equals, the quotients are

equal.

77. Consider the equation 1 x = 14.

It is required to find what numerical value x must have

consistent with this statement.

Dividing both sides by 7, we get

ic = 2 (Axiom 4).

Similarly, if - = — 6,

multiplying both sides by 2, we get

i« = -12 . . . . (Axiom 3).

Again, in the equation 7 .^• — 2 a; — .t = 23 + 15 — 10, by

collecting terms, we have 4 a; = 28.

.-. X = 7.
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TRANSPOSITION OF TERMS.

78. To solve 3aj - 8 == a; + 12.

Here the unknown quantity occurs on both sides of the

equation. We can, however, transpose any term from one

side to the other by simply changing its sign. This we pro-

ceed to show.

Subtract x from both sides of the equation, and we get

3a;-a;-8 = 12 . . . (Axiom 2).

Adding 8 to both sides, we have

3a;-x = 12 + 8 . . (Axiom 1).

Thus we see that + x has been removed from one side,

and appears as — a? on the other ; and — 8 has been re-

moved from one side and appears as + 8 on the other.

It is evident that similar steps may be employed in all

cases. Hence we may enunciate the following rule

:

Rule. Any term may be transposed from one side of the

equation to the other by changing its sign.

79. We may change the sign of every term in an equation;

for this is equivalent to multiplying both sides by — 1,

which does not destroy the equality (Axiom 3).

Ex, Take the equation — 3 aj — 12 = x — 24.

Multiplying both sides by — 1, 3 x + 12 = — x -f- 24,

which is the original equation with the sign of every term changed.

80. We can now give a general rule for solving a simple

equation with one unknown quantity.

Rule. Transpose all the terms containing the unknoimi

quantity to one side of the equation, and the known quan-

tities to the other. Collect the terms on each side ; divide

both sides by the coefficient of the unknown cpiantity, and

the value required is obtained.

Ex. 1. Solve 5(x - 3) - 7(6 - x) + 3 = 24 - 3(8 - x).

Removing brackets, 5x- 15-42 + 7x + 3=:24-24 + 3x;

transposing, 5x + 7x-3x = 24-24 + 15 + 42-3;
collecting terms, 9 x = 54.

.-. x = 6.
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Ex. 2. Solve 5x - (ix - 7)(Q X - i:>) = a - S(4x - 9)(x - 1).

Simplifying, we have

5 X - C12 x'^ - 41 X + o5) =6-3(4 x^ - 13 x + 9),

and by removing brackets,

5 X - 12 x2 + 41 a: - 35 = G - 12 x'^ + 39 x - 27.

Erase the term — 12x2 on each side and transpose;

thus 5x + 41x-39x = 6-27 +35;

collecting terms, 7 x = 14.

.-. x = 2.

Note. Since the — sign before a bracket affects every term within

it, in the first line of work of Ex. 2, we do not remove the brackets

until we have formed the products.

Ex. 3. Solve 7 X - 5[x - {7 - (3(x - 3)}] = 3 x + 1.

Removing brackets, we have

7 X - 5[x - {7 - 6 X + 18}] = 3 X + 1,

7 X - 5[x - 25 + 6 .x] = 3 X + 1,

7x- 5x+ 125-30x = 3x-f 1
;

transposing, 7x — 5x — 30x — 3x= 1 — 125
;

collecting terms, — 31 x = — 124

;

.-. x = 4.

81. It is extremely useful for the begimier to acquire

the habit of occasionally verifying, that is, proving the truth

of his results. Proofs of this kind are interesting and con-

vincing ; and tlie habit of applying such tests tends to

make the student self-reliant and confident in his own
accuracy.

In the case of simple equations we have only to show

that when we substitute the value of x in the two sides of

the equation Ave obtain the same result.

Ex. To show that x = 2 satisfies the equation

5x-(4x-7)(3x-5)=G-3(4x-9)(x-l). Ex. 2, Art. 80.

When x=2, the left side 5x-(4x-7)(3x-5)=10-(8-7)(C-5)

= 10-1=9.

The right sideC, - 3(4x - 9)(x _ l) = - 3(8 - 9)(2 - 1)

= 6-3(- 1) =9.

Thus, since these two results are the same, x = 2 satisfies the

equation.
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EXAMPLES VII.

Solve the following equations

:

1. 3 X + 15 = a: + 25. 2. 2 a-, - 3 = 3 x - 7.

3. 3x + 4 = 5(x-2). 4. 2x-\-S = lQ-(2x-S).
5. 8(x-l)+17(x-3)=4(4.x-9)+4.
6. 15(x - 1) + 4(x + 3) = 2(7 + 0,-).

7. 5x-6(x-5) = 2(a; + 5)+5(x-4).
8. 8(x-3)-(6-2x)=2(x + 2)-5(5-x).
9. 7(25-x)-2x = 2(3x-25).

10. 3(169 - x) - (78 + X) = 29 X.

11. 5 X - 17 + 3 X - 5 = 6 X - 7 - 8 X + 115.

12. 7 X - 39 - 10 X + 15 = 100 - 33x + 2t>.

13. 118-65x-123 = 15x + 35-120x.
14. 157 -21 (x + 3)= 163 -15(2 X- 5).

15. 179-18(x-10)=158 -3(x- 17).

16. 97 -5(x + 20)=lll-8(x + 3).

17. X - [3 + {x - (3 + X)}] = 5.

18. 5 X - (3 X - 7) - {4 - 2 X - (6 X - 3)} = 10.

19. 14x-(5x-9)-{4 -3x-(2x-3)} = 30.

20. 25X-19- [3-{4x-5}J = 3x-(6x-5).
21. (X + 1) (2 X + 1) = (x + 3) (2 X + 3) - 14.

22. (X + 1)2 - (x2 _ 1) =3 x(2 X + 1) - 2(x + 2) (X + 1) + 20.

23. 2(x+l)(x + 3)+8=(2x+l)(x + 5).

24. 6(x2-3x + 2)-2(x2- l)z=4(x+ l)(x + 2)-24.
25. 2(x - 4) - (x2 + X - 20) = 4 x2 - (5 X + 3) (X - 4) - 64.

26. (x + 15)(x-3)-(x2-6x + 9)=30-15(x-l).
27. 2x-5{3x-7(4x- 9)} = 66.

28. 20(2 - x) + 3(x - 7) - 2[x + 9 - 3 {9 - 4(2 - x)}] = 22.

29. X + 2 - [x - 8 - 2 {8 - 3(5 - x) - x}] = 0.

30. 3(5-6x)-5[x-5{l -3(x-5)}]=23.
31. (x+l)(2x + 3)=2(x+l)2 + 8.

32. 3(x - 1)2 - 3(x2 - 1) = X - 15.

33. (3x + l)(2x-7) = 6(x-3)2 + 7.

34. x2 - 8 X + 25 = x(x - 4) - 25(x - 5) - 16.

35. x(x+ l) + (x + l)(x + 2) = (x + 2)(x + 3)+x(x-i- 4) - 9.

36. 2(x + 2)(x-4)=x(2x + 1)-21.
37. (x + l)2 + 2(x + 3)2zr:3x(x + 2)+35.
38. 4(x + 5)2 - (2 X + 1)2 = 3(x - 5) + 180.

39. 84 + (X + 4)(x - 3)(x + 5) = (x + l)(x + 2)(x + 3).

40. (X + 1) (x + 2) (x + 6) = x3 + 9x2 + 4(7 X - 1).



CHAPTER VIII.

Symbolical Expression.

82. In solving algebraic problems the chief difficulty of

the beginner is to express the conditions of the question

by means of symbols. A question proposed in algebraic

symbols will frequently be found puzzling, when a similar

arithmetical question would present no difficulty. Thus,

the answer to the question "find a number greater than x

by a " may not be self-evident to the beginner, who would

of course readily answer an analogous arithmetical question,

"find a number greater than 50 by G." The i)rocess of

addition which gives the answer in the second case supplies

the necessary hint; and, just as the number which is greater

than 50 by 6 is 50 + 6, so the number which is greater than

X by a is ic + a.

83. The following examples will perhaps be the best intro-

duction to the subject of this chapter. After the first we
leave to the student the choice of arithmetical instances,

should he find them necessary.

Ex. 1. By how much does x exceed 17 ?

Take a numerical instance ;
" by how much does 27 exceed 17 ?

"

The answer obviously is 10, which is equal to 27 — 17.

Hence the excess of x over 17 is cc — 17.

Similarly the defect of x from 17 is 17 — x.

Ex. 2. If X is one part of 45 the other part is 45 — x.

Ex. 3. How far can a man walk in a hours at the rate of 4 miles

an hour ?

In 1 hour he walks 4 miles.

In a hours he walks a times as far, that is, 4 a miles.
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Ex. 4. A and B are playing for money ; A begins with $p and B
with q dimes : after B has won $ x, how many dimes has each ?

What B has won A has lost,

.-.A has 10 {p — x) dimes,

B has q + lOx dimes.

EXAMPLES VIII. a.

1

.

What must be added to x to make y ?

2. By what must 3 be multiplied to make a ?

3. AVhat dividend gives b as the quotient when 5 is the divisor ?

4. What is the defect of 2 c from 3 d.

6. By how much does 3^ exceed k ?

6. If 100 be divided into two parts, and one part be m, what is

the other ?

7. What number is less than 20 by c ?

-^^ 8. What is the price in cents of a oranges at ten cents a dozen ?

9. If the difference of two numbers be 11, and if the smaller be x,

what is the greater ?

10. If the sum of two numbers be c, and one of them is 20, what is

the other ?

11. What is the excess of 90 over x ?

12. By how much does x exceed 30 ?

13. If 100 contains x 5 times, what is the value of x .

14. What is the cost in dollars of 40 books at x dimes each ? '

15. In X years a man will be 36 years old, what is his present age ?

16. How old will a man be in a years if his present age is x years ?

17. If X men take 5 days to reap a field, how long will one man
take?

18. What value of x will make 5 x equal to 20 ?

19. What is the price in dimes of 120 apples, when the cost of two
dozen is x cents ?

20. How many hours will it take to walk x miles at 4 miles an
hour ?

21. How far can I walk in x hours at the rate of y miles an hour ?

22. How many miles is it between two places, if a train travelling

p miles an hour takes 5 hours to perform the journey ?
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23. A man has a dollars and h dimes, how many cents has he ?

24. If I spend x half-dollars out of a sum of .s20, how many half-

dollars have I left ?

25. Out of a purse containing Z(t and b dimes a man spends c

cents
;
express in cents the sum left.

26. By how much does 2 x — 5 exceed x+\2
27. What number must be taken from « — 2 6 to leave « — 3 & ?

28. If a bill is shared equally amongst x persons, and each pays

four dimes, how many cents does the bill amount to ?

29. If I give away c dimes out of a purse containing a dollars and

h half-dollars, how many dimes have I left ?

30. If I spend x quarters a week, how many dollars do I save out

of a yearly income of $1/ ?

31. A bookshelf contains x Latin, ?/ Greek, and z English books
;

if there are 100 books, how many are there in other languages ?

32. I have x dollars in my purse, tj dimes in one pocket, and z

cents in another ; if I give away a half-dollar, how many cents have I

left?

33. In a class of x boys, ij work at Classics, z at Mathematics, and

the rest are idle ; what is the excess of workers over idlers ?

84. We add a few harder examples worked out in full.

Ex. 1. What is the present age of a man who x years hence will

be m times as old as his son now aged ij years ?

In X years the son's age will be ?/ + ic years ; hence the father's age

will be m{y + x) years ; therefore now the father's age is m{]i + x) —

X years.

Ex. 2. Find the simple interest on $ k in n years at / per cent.

Interest on $ 100 for 1 year is -•?/,

f

^k §

Interest on .*? k for n years is 8

100

100'

loo"

Ex. 3. A room is x yards long, ij feet broad, and a feet high ; find

how many square yards of carpet will be required for the floor, and

how many square yards of paper for the walls.
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(1) The area of the floor is Sxy square feet

;

. •. the number of square yards of carpet required is —-^ = ^^

(2) The perimeter of the room is 2(3 x + y) feet

;

. •. the area of the walls is 2a(Sx -{- y) square feet

;

1 . It • 1 • 2a(3x + y)
. -. number of square yards of paper required is ^^—^r -^'

Ex. 4. The digits of a number beginning from the left are a, 6, c

;

what is the number ?

Here c is the digit in the units' place ; b standing in the tens' place

represents b tens ; similarly a represents a hundreds.

The number is therefore equal to a hundreds + b tens + c units

= 100a+ 10 6 + c.

If the digits of the number are inverted, a new number is formed

which is symbolically expressed by

100c + 106 + a.

Ex. 5. What is (1) the sum, (2) the product of three consecutive

numbers of which the least is n ?

The numbers consecutive to n are n + 1, n -{- 2.

.
•. the sum = n -\- (n + 1) + 0^ + ^)

= 3 u + 3.

And the product = n(n -\- 1) (u + 2).

We may remark here that any even number may be de-

noted by 2n, where n is any positive whole number; for

this expression is exactly divisible by 2.

Similarly, any odd number may be denoted by 2 7i + 1

;

for this expression when divided by 2 leaves remainder 1.

EXAMPLES VIII. b,

1. Write four consecutive numbers of which x is the least.

2. Write three consecutive numbers of which y is the greatest.

3. Write five consecutive numbers of which x is the middle one.

4. What is the next even number after 2 n ?

5. What is the odd number next before 2 r/: + 1 ?

6. Find the sum of three consecutive odd numbers of which the

middle one is 2 « + 1.
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7. A man makes a journey of x miles. He travels a miles by coach,

h by train, and finishes the journey by boat. How far does the boat

carry him ?

8. A horse eats a bushels and a donkey h bushels of corn in a

week ; how many bushels will they together consume in n weeks ?

9. If a man was x years old 5 years ago, how old will he be y

years hence ?

10. A boy is x years old, and five years hence his age will be half

that of his father. How old is the father now ?

11. What is the age of a man who y years ago was m times as old

as a child then aged x years ?

12. A's age is double B's, B's is three times C's, and C is x years

old : find A's age.

13. AVhat is the interest on $1000 in h years at c per cent. ?

14. What is the interest on ^x in a years at 5 per cent. ?

15. What is the interest on $50 a in a years at a per cent. ?

16. What is the interest on $2-4.t?/ in x months at y per cent, per

annum ?

17. A room is x yards in length, and y feet in breadth ; how many
square feet are there in the area of the floor ?

18. A square room measures x feet each way ; how many square

yards of carpet will be required to cover it ?

19. A room is p feet long and x yards in width ; how many yards

of carpet two feet wide will be required for the floor ?

20. What is cost in dollars of carpeting a room a yards long, h feet

broad, with carpet costing c dimes a square yard ?

21. A room is a yards long and h yards broad ; in the middle there

is a carpet c feet square ; how many square yards of oil-cloth will be

required to cover the rest of the floor ?

22. How long will it take a person to walk h miles if he walks 20

miles in c hours ?

23. A train is running with a velocity of x feet per second ; how

many miles will it travel in y hours ?

24. How many men will be required to do in x hours what y men

do in xz hours ?



CHAPTER IX.

Problems Leading to Simple Equations.

85. The i)rinciples of the last chapter may now be em-

ployed to solve various problems.

The method of procedure is as follows

:

Represent the unknown quantity by a symbol, as x, and
express in symbolical language the conditions of the ques-

tion
; we thus obtain a simple equation which can be solved

by the methods already given in Chapter vii.

Note. Unknown quantities are usually represented by the last

letters of the alphabet.

Ex. 1, Find two numbers whose sum is 28, and whose difference is 4.

Let X represent the smaller number, then x 4- 4 represents the

greater.

Their sum is a: + (x + 4), which is to be equal to 28.

Hence x -|- x -f- 4 = 28
;

2 a; = 24
;

. •. x= 12,

and X + 4 = 16,

so that the numbers are 12 and 16.

The beginner is advised to test his solution by proving

that it satisfies the conditions of the question.

Ex. 2. Divide 60 into two parts, so that three times the greater

may exceed 100 by as much as 8 times the less falls short of 200.

Let X represent the greater part, then 60 — x represents the less

Three times the greater part is 3 x, and its excess over 100 is

3x-100.

Eight times the less is 8(60 — x), and its defect from 200 is

200 - 8(60 - X).

F 65



(36 ALGEBRA.

Whence the symbolical statement of the question is

Sx- 100 = 200-8(60-0;);

3a:- 100 = 200 - 480 + 8 X,

480 - 100 - 200 = 8 X - 3 X,

5x= 180;

a: = 36, the greater part,

and 60 — x = 24, the less.

Ex. 3. Divide 847 between A, B, C, so that A may have $10 more
than B, and B $ 8 more than C.

Suppose that C has x dollars ; then B has x + 8 dollars, and A has

X + 8 + 10 dollars.

Hence x + (./: + 8) + (x + 8 + 10) = 47
;

X + a; + 8 + X + 8 + 10 = 47,

3.r = 21;

.-. x=7,
so that C has $7, B $15, A $25.

Ex. 4. A person spent $112.80 in buying geese and ducks ; if each

goose cost 14 dimes, and each duck 6 dimes, and if the total number
of birds bought was 108, how many of each did he buy ?

In questions of this kind it is of essential importance to

have all quantities expressed in the same denomination ; in

the present instance it will be convenient to express the

money in dimes.

Let X represent the number of geese, then 108 — x represents the

number of ducks.

Since each goose cost 14 dimes, x geese cost 14 x dimes.

And since each duck cost 6 dimes, 108 — x ducks cost 6(108 — x,

dimes.

Therefore the amount spent is

14a;-f 0(108 -x) dimes;

but the question states that the amount is. also $112.80, that is, 1128

dimes.

Hence 14 a: + 6(108 - x)= 1128
;

dividing by 2, 7 a: + 324 - 3 x = 564,

4a; = 240;

.-. a; = 00, the number of geese
;

and 108 — x = 48, the number of ducks.
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Ex. 5. A is twice as old as B ; ten years ago he was four times as

old ; what are their present ages ?

Let X represent B's age in years, then 2 x represents A's age.

Ten years ago their ages were respectively, x — 10 and 2 5c — 10

years ; thus we have 2x — 10 = 4(x — 10) ;

2 a; - 10 = 4 X - 40,

2 a: = 30
;

.-. x = 15,

so that B is 15 years old, A 30 years.

Note. In the above examples the unknown quantity x represents

a number of dollars, ducks, years, etc, ; and the student must be care-

ful to avoid beginning a solution with a supposition of the kind, " let

X = A's share," or "let x = the ducks," or any statement so vague

and inexact.

EXAMPLES IX.

1. One number exceeds another by 5, and their sum is 29 ; find

them,

2. The difference between two numbers is 8 ; if 2 be added to the

greater the result will be three times the smaller ; find the numbers,

3. Find a number such that its excess over 50 may be greater by
11 than its defect from 89,

4. What number is that which exceeds 8 by as much as its double

exceeds 20 ?

5. Find the number which multiplied by 4 exceeds 40 as much as

40 exceeds the original number.

6. A man walks 10 miles, then travels a certain distance by train,

and then twice as far by coach. If the whole journey is 70 miles, how
far does he travel by train ?

7. What two numbers are those whose sum is 58, and difference 28 ?

8. If 288 be added to a certain number, the result will be equal to

three times the excess of the number over 12 ; find the number,

^ 9. Twenty-three times a certain number is as much above 14 as

16 is above seven times the number ; find it.

a^ 10. Divide 105 into two parts, one of which diminished by 20 shall

be equal to the other diminished by 15.

11. Divide 128 into two parts, one of which is three times as large

as the other.

12. Find three consecutive numbers whose sum shall equal 84.
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13. The difference of the squares of two consecutive numbers is

35 ; find them.

14. The sum of two numbers is 8, and one of them with 22 added

to it is five times the other ; find the numbers.

15. Find two numbers differing by 10 whose sum is equal to twice

tlieir difference.

16. A and B begin to play each with $60. If they play till A's

money is double B's, what does A win ?

17. Find a number such that if 5, 15, and 35 are added to it, the

product of the first and third results may be equal to the square of

the second.

18. The difference between the squares of two consecutive num-
bers is 121 ; find the numbers.

19. The difference of two numbers is 3, and the difference of their

squares is 27 ; find the numbers.

20. Divide $380 between A, B, and C, so that B may have $30
more than A, and C may have $20 more than B.

21. A sum of $7 is made up of 46 coins which are either quarters

or dimes ; how many are there of each ?

22. If silk costs five times as much as linen, and I spend $48 in

buying 22 yards of silk and 50 yards of linen, find the cost of each

per yard.

23. A father is four times as old as his son ; in 24 years he will

only be twice as old ; find their ages.

24. A is 25 years older than B, and A's age is as much above 20

as B's is below 85 ; find their ages.

25. A's age is three times B's, and in 18 years A will be twice as

old as B ; find their ages.

26. A is four times as old as B, and in 20 years will be twice as

old as C, who is 5 years older than B ; find their ages.

27. A's age is six times B's, and fifteen years hence A will be three

times as old as B ; find their ages.

28. A sum of $16 was paid in dollars, half-dollars, and dimes.

The number of half-dollars used was four times the number of dollars

and twice the number of dimes ; how many were there of each ?

29. The sum of the ages of A and B is 30 years, and five years

hence A will be three times as old as B ; find their present ages.

30. I spend $69.30 in buying 20 yards of calico and 30 yards of

silk ; the silk costs as many quarters per yard as the calico costs cents

per yard ; find the price of each.
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31. I purchase 127 bushels of grain. If the number of bushels of

wheat be double that of the corn, and seven more than five times the

number of bushels of corn equals the number of bushels of oats, find

the number of bushels of each.

32. The length of a room exceeds its breadth by 3 feet ; if the

length had been increased by 3 feet, and the breadth diminished by 2

feet, the area would not have been altered ; find the dimensions.

33. The length of a room exceeds its breadth by 8 feet ; if each

had been increased by 2 feet, the area would have been increased by
60 feet ; find the original dimensions of the room.

34. A and B start from the same place walking at different rates
;

when A has walked 15 miles B doubles his pace, and 6 hours later

passes A ; if A walks at the rate of 5 miles an hour, what is B's rate

at first ?

35. A sum of money is divided among A, B, and C, so that A and
B have together |20, A and C $30, and B and C $40 ; find the share

of each.

36. A man sold two pieces of cloth, losing $ 6 more on the one than

on the other. If his entire loss was $4 less than four times the smaller

loss, find the amount lost on each piece.

37. Two men received the same sum for their labor ; but if one

had received f 10 more, and the other $ 8 less, then one would have

had three times as much as the other. What did each receive ?

38. In a certain examination the number of successful candidates

was four times the number of those who failed. If there had been

14 more candidates and 6 less had failed, the number of those who
passed would have been five times the number of those who failed.

Find the number of candidates.

39. A purse contains 14 coins, some of which are quarters and the

rest dimes. If the coins are worth .|2 altogether, how many are there

of each kind ?

40. An estate was divided among three persons in such a way that

the share of the first was three times that of the second, and the share

of the second twice that of the third. The first received 1 900 more
than the third. How much did each receive ?



CHAPTER X.

Resolution^ into Factors.

86. Definition. When an algebraic expression is the

product of two or more expressions, each of these latter

quantities is called a factor of it, and the determination of

these quantities is called the resolution of the expression

into its factors.

87. Rational expressions do not contain square or other

roots (Art. 14) in any term.

88. Integral expressions do not contain a letter in the

denominator of any term. Thus, x^ -\- ?> xy -{- 2 y'^, and

\ x^ -\- ^ xy — ^ y"^ are integral expressions.

89. In this chapter we shall exj)lain the principal rules

by which the resolution of rational and integral expressions

into their component factors, which are rational and integral

expressions, may be effected.

WHEN EACH OF THE TERMS IS DIVISIBLE BY A
COMMON FACTOR.

90. The expression may be simplified by dividing each

term separately by this factor, and enclosing the quotient

within brackets; the common factor being placed outside

as a coefficient.

Ex. 1. The terms of the expression Z a^ — Q ah have a common
factor Za.

.-. Z(fi-Qab = 3aia-2b).

Ex. 2. 5 a-bx^ - 15 abx^- - 20 b^x^ ^ 5 bx'^Ca'^x - 3 a - 4 &2).

70
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EXAMPLES X. a.

Resolve into factors

:

1. a^ -ax. 5. 8 X - 2 x\ 9. 15 cfi - 225 aK

2. x^ - x:\ 6. 5 c'% - 5 a^^ 10. 54 - 81 x.

3. 2 a - 2 «2. 7. 15 + 25 x^. 11. 10 x^ - 25 a;*?/.

4. 7^)2 + p. 8. 16 X + 64 xhj. 12. 3 x^ - x2 + x.

13. ^a^-2>a%-\-Q cfib'^. 16. 5 x^ - 10 as^s _ 15 a^x^

14. 2 x2«/3 - 6 x2?/2 + 2 xy/3. 17. 7 « - 7 a^ + 14 «4,

15. 6 x3 - 9 x2?/ + 12 x?/2. 18. 38 a^x^ + 57 ff%2.

WHEN THE TERMS CAN BE GROUPED SO AS TO
CONTAIN A COMMON FACTOR.

91. Ex. 1. Resolve into factors x2 — «x + bx — ah.

Noticing that the first two terms contain a factor x, and the last two
terms a factor b, we enclose the first two terms in one bracket, and
the last two in another. Thus,

x2 — ax + &^ — (lb = (x2 — ax) + (bx — ab)

= x(x — a)-h b(x— a) . . . (1)

= (x- a)(x + b),

since each bracket of (1) contains the same factor x — a.

Ex. 2. Resolve into factors 6 x2 — 9 ax + 4 bx — 6 ab.

6 x2 - 9 «x + 4 ?>x - 6 «6 = (6 x2 - 9 ax) + (4 6x - 6 ab)

= 3 x(2 X - 3 a) + 2 &(2 X - 3 a)

= (2x-3«)(3x + 2?>).

Ex. 3. Resolve into factors 12 a^ — iab — S axP- + bx:^.

12 d^-4:ab-^ ax2 + &x2 = (12 a2 - 4 ab) - (3 «x2 - 6x2)

= 4«(3« -6)-x2(3« - b)

= (3a-Z>)(4a-x2).

Note. In the first line of work it is usually sufficient to see that

each pair contains some common factor. Any suitably chosen pairs

will bring out the same result. Thus, in the last example, by a

different arrangement, we have

12 a2 _ 4 a?> - 3 ax2 + 6x2 ^ (12 ^2 _ 3 ^^^^2) _ (4 a6 - 6x2)

= 3a(4a - x2)-6(4«-x2)
= (4rt-x2)(3a-6).

The same result as before, for the order in which the factors of a

product are written is of course immaterial.
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\

EXAMPLES X. b. /

Resolve into factors

:

1. ifi + ah + ac-\- he. 12. 3 ax — hx — S ay + hy.

^ a2 - ac -\- ab - he. 13. ox^ + Sxy — 2ax- ay.

3. aV + acd + ahc + hd. 14. mx — 2 my — 7iaj + 2 ?iy.

4. a^ -\-Sa + ac + Sc. 15. aa;2 -Sbxy - axy + 3 6y2_

5. 2 X + ex + 2 c + c2. 16. x^ + mxy — 4:xy — 4 my'^.

6. x"^ - ax + 5 X - 5 a. 17. 2 x* - x^ + 4 x - 2.

7. 5a + a6 + 56 + 6-^. 18. 3x3 + 5x2 + 3x + 5.

8. ah -hy-ay + if. 19. x* + x^ + 2 x + 2.

9. mx — my — nx + ny. 20. y^ — y^ + y — \.

id^! ?nx — ma + wx — na. ^L axy + 6cxy — az — hcz.

11. 2 ax + ay + 2 &x + hy. 22. /^x'-^ + g^x'^ - af - a/^.

TRINOMIAL EXPRESSIONS.
*

92. When the Coefficient of the Highest Power is Unity.

Before proceeding to the next case of resolution into factors

the student is advised to refer to Chap. iv. Art. 51. Atten-

tion has there been drawn to the way in which, in forming

the ]3roduct of two binomials, the coefficients of the different

terms combine so as to give a trinomial result. Thus, by

Art. 51,

(x + 5)(x + 3)=x' + Sx-\-15 .... (1),

(x-5)(x-3)=x^-Sx-\-15 .... (2),

(x-\-5)(x-S)=x^-{-2x-W .... (3),

(oj - 5)(aj + 3)= x2- 2a; -15 .... (4).

We now propose to consider the converse problem : namely,

the resolution of a trinomial expression, similar to those which

occur on the right-hand side of the above identities, into its

component binomial factors.

By examining the above results, we notice that

:

1. The first term of both the factors is x.

2. The product of the second terms of the two factors is

equal to the third term of the trinomial ; thus in (2) above

we see that 15 is the product of — 5 and — 3 ; while in

(3) — 15 is the product of -f 5 and — 3.
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3. The algebraic sum of the second terms of the two factors

is equal to the coefficient of x in the trinomial ; thus in (4) the

sum of — 5 and + -^ gives — 2, the coefficient of x in the tri-

nomial.

In showing the application of these laws we will first con-

sider a case where the third term of the trinomial is positive.

Ex. 1, Resolve into factors x^ + 11 a: + 24.

The second terms of the factors must be such that their product is

+ 24, and their sum + 11. It is clear that they must be + 8 and + 3.

.-. x2 + llx + 24=(ft; + 8)(x + 3).

Ex. 2. Resolve into factors x'^ —10x-\- 24.

The second terms of the factors must be such that their product is

+ 24, and their sum — 10. Hence they must both be negative, and it

is easy to see that they must be — 6 and — 4.

... x2- 10x + 24=(x-6)(a;-4).

Ex. 3. x2- ISx + Sl =(x-9)(x-9) = (x-9)2.

Ex. 4. X* + 10 X- + 25 = (x2 + 5) (x'^ + 5) = (x^ + 5)2.

Ex. 5. Resolve into factors x'^ — 11 ax + 10 «2.

The second terms of the factors must be such that their product is

+ 10 a2, and their sum — 11 a. Hence they must be — 10 a and — a.

.'. x2 — 11 ax + 10 a2 =(x — 10 a) (x — a).

Note. In examples of this kind the student should always verify

his results, by forming the product {mentally, as explained in Chapter

IV.) of the factors he has chosen.

EXAMPLES X. c.

Resolve into factors :

1.
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27. x^-\-49xy + G00y'^. 33. 20 + 9x + iK2.

28. x2?/2 + 34 a:?/ + 289. 34. 132 - 23 x + aj2.

29. a^b^ + 37 a-^fta + 300. 35. 88 + 19 x + x^.

30. a2 - 29 a?> + 54 62. 36. 130 + 31 x^ + x'^y^.

31. x^ + 162 x2 + 6561. 37. 204 - 29 x2 + x*.

32. 12 - 7 X + X-. 38. 216 + 35 x + x2.

93. Next consider a case where the third term of the tri-

7iomial is negative.

Ex. 1. Resolve into factors x2 + 2 x — 35.

The second terms of the factors must be such that their product is

— 35, and their algebraic sum + 2. Hence they must have opposite

signs, and the greater of them must be positive in order to give its

sign to their sum.

The required terms are therefore + 7 and — 5.

. •. x2 + 2 X - 35 = (x + 7) (x - 5)

.

Ex. 2. Resolve into factors x2 — 3 x — 54.

Tlie second terms of the factors must be such that their product is

— 54, and their algebraic sum — 3. Hence they must have opposite

signs, and tlie greater of them must be negative in order to give its

sign to their sum.

Tlie required terms are therefore — 9 and + 6.

... a:2_3x- 54= (x-9)(x + 6).

Remembering that in these cases the numerical quantities must have

opposite signs, if preferred, the following method may be adopted.

Ex. 3. Resolve into factors x2^2 _|_ 23 x?/ - 420.

Find two numbers whose product is 420, and whose difference is 23.

These are 35 and 12 ; hence inserting the signs so that the positive

may predominate, we have

x-2/2 + 23 xy - 420 = (xy + 35) (xy - 12).

EXAMPLES X. d.

Resolve into factors

:

1. x2 - X - 2. 5. x2 + 2 X - 3. 9. «2 + « _ 20.

2. x2 + X - 2. 6. x2 + X - 56. 10. a- - 4 a - 117.

3. x2 - X - 0. 7. x2 - 4 X - 12. 11. x2 + 9 x - 36.

4. x2 - 2 X - 3. 8. «2 _ a _ 20. 12. x2 + x - 156.
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13. x^^x- 110. 18. xV - 5xy - 24. 23. a^ - U a - 26.

14. x^-9x- 90. 19. x2 + ax - 42 a"-. 24. a'^y-+U ay-2i0.

15. x^-x- 240. 20. x'-2-32 x^-105 y\ 25. ft^ - a'^&s _ 5^ 54.

16. a2 _ 12 « - 85. 21. x2 + 18 x - 115. 26. x^ - 14 x2 - 51.

17. (fi - 11 « - 152. 22. x2 + 16 X - 260. 27. 7/^+6 xV-27 x^.

28. «- + 12 abx - 28 b'-x^. 31. x^ - a^^^i _ 132 (^4.

29. a2 _ 18 axy - 243 x^K 32. x^ - a%-^ - 462

30. x^ + 13 a-x:^ - 300 a\ 33. x^ + x^ - 870.

34. 2 + X - x\ 36. 110 - X - x^. 38. 120 - 7 ax - a^x^.

35. 6 + X - x2. 37. 380 - X - x^.

94. When the Coefficient of the Highest Power is not Unity.

Again, referring to Chap. iv. Art. 51, we may write the

following results:

(3x + 2)(x-\-4:)=3x^ + Ux-{-S . . . (1),

(3x-2)(x-4:)=3a:^-Ux + S . . . (2),

(3x-\-2)(:x-4:)=Sx^-10x-S . . . (3),

l3x-2)(x + ^)=3x''-{-10x-S . . . (4).

The converse problem presents more difficulty than the

cases we have yet considered.

Consider the result 3 x~-l'ix + S = (3x- 2) (x - 4).

The first term 3 x^ is the product of 3 x and x.

The third term + 8 is the product of — 2 and — 4.

The middle term — 14 a; is the result of adding together

the two products 3x x — 4 and x x —2.
Again, consider the result 3 a^^— 10 0^—8= (3 x4-2)(;r— 4).

The first term 3 x^ is the product of 3 cc and x.

The third term — 8 is the product of + 2 and — 4.

The middle term — 10 x is the result of adding together

the two products 3 a: x — 4 and x x2; and its sign is nega-

tive because the greater of these two products is negative.

Considering in a similar manner results (1) and (4), we
see that

:

1. If the third term of the trinomial is positive, then the

second terms of its factors have both the saine sign, and this

sign is the same as that of the middle term of the trinomial.
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2. If the third term of the trinomial is negative, then the

second terms of its factors have opposite signs.

95. The beginner will frequently find that it is not easy

to select the proper factors at the first trial. Practice alone

will enable him to detect at a glance whether any pair he

has chosen will combine so as to give the correct coefiicients

of the expression to be resolved.

Ex. Resolve into factors 7 x~ — 19 x — 6.

Write (7 x 3) (x 2) for a first trial, noticing that 3 and 2 must
have opposite signs. These factors give 7 x~ and — 6 for the first and
third terms. But since 7 x 2— 3 x 1 = 11, the combination fails to

give the correct coefficient of the middle term.

Next try (7 x 2) {x 3).

Since 7x3 — 2x1 = 19, these factors will be correct if we insert

the signs so that the negative shall predominate.

Thus 7x2- 19a;-6=(7x + 2)(x-3).

[Verify by mental multiplication.]

96. In actual work it will not be necessary to put down
all these steps at length. The student will soon find that

the different cases may be rapidly reviewed, and the unsuit-

able combinations rejected at once.

Ex.1. Resolve into factors 14x2 + 29 X- 15 (1),

Ux2-29x-15 (2).

In each case we may write (7 x 3) (2 x 5) as a first trial, noticiug

that 3 and 5 must have opposite signs.

And since 7 x 5 — 3 x 2 = 29, we have only now to insert the proper

signs in each factor.

In (1) the positive sign must predominate.

In (2) the negative sign must predominate.

Therefore 14 x'^ + 29 x - 15 = (7 x - 3) (2 x + 5).

14x2-29x-15=(7x + 3)(2x-5).

Ex.2. Resolve into factors 5 x2 + 17 X + 6 (1),

5x2-17x + 6 (2).

In (1) we notice that the factors which give G are both positive.

In (2) we notice that the factors which give 6 are both negative.
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And therefore for (1) we may write (5x+ )(ic + ).

Q (2) we may write (5x — )(a: — ).

/ And, since 5x3+1 x 2 = 17, we see tliat

Q x^ + n X + Q =(5 X + 2)(x + S).

5 x2 - 17 a: + 6 = (5 X - 2) (X - 3).

In each expression the third term 6 also admits of factors 6 and 1,

but this is one of the cases referred to above which the student would

reject at once as unsuitable.

Ex. 3. 9a;- - 48 xy + 64 y^ = {3x - Sy)(Sx - Sy)

= (i3x-Syy.

Ex.4. 6 + 7a:-5a:2=(3 + 5a-)(2 -a;).

Note. In Chapter xxvi. a method of obtaining the factors of aiiy

trinomial in the form ax^ + 6x + c is given.

EXAMPLES X. e.

Resolve into factors

:

1. 2a;2 + 3a:+ 1.

2. 3 a;^ + 5 x + 2.

3. 2x2 +5 a: + 2.

4. 3a;2+ lOx + 3.

5. 2x2 + 9x + 4.

6. 3 a:2 + 8 X + 4.

7. 2x2 + llx + 5.

8. 3x2 + llx + 6.

9. 5:c2 + llx + 2.

10. 3x2 + a: -2.

11. 4x2 + llx-3.

12. Sx- + 14x - 5.

13. 2 X- + 15 X - 8.

97. We add an exercise containing miscellaneous exam-

ples on tlie preceding cases.

14.
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6. x^-\-x-6. 20. a;'-^ + 23rK+ 102.

6. 2 ax^+ 3 axy

—

2 6a;y— 3 by^. 21. amx^ -|- bmxy— anxy— bny\

7. x'^-\-7xy -60y^. 22. 6x2 -7a: -3.

8. a2 _ rt|/ - 210 ?/2. 23. 3 + 11 x - 4 x^.

9. x2 - 21 X + 110. 24. 12x2 _ 23x?/ + 10?/2.

10. 24 + 37 X - 72 x2. 25. 3 x2 + 7 x + 4.

11. 98-7x-x2. 26. a2_ 32^ + 256.

12. 3 .x2 + 23 X 4- 14. 27. 3 x2 - 19 x - 14.

13. 2 x2 -f 3 X - 2. 28. x2 - 19x + 90.

14. x2 -20xy - 96 ?/2. 29. x2 + 3 x - 40.

15. a2 - 20 abx + 75 b'^x'^. 30. x2y2 _iQxy + 39.

16. a2 _ 24 « + 95. 31. 204 - 5 x - x2.

17. 7 + 10 X + 3 x2. 32. 15 x2 + 224 x - 15.

18. «2 _ 4 « _ 21. 33. 3x2 + 41 X + 26.

19. x2 + 43 xy + 390 y\ 34. 65 + 8 x?/ - x^y^.

WHEN AN EXPRESSION IS THE DIFFERENCE OF TWO
SQUARES.

98. By multiplying a -\-b hj a — h we obtain the identity

(a -\- b){a — b) = a- — b%

a result which may be verbally expressed as follows

:

The product of the sum and the difference of any two quan-

tities is equal to the difference of their squares.

Conversely, the difference of the squares of any two quan-

tities is equal to the jjroduct of the sum and the difference of
the two quantities.

Ex. 1. Resolve into factors 25x2 — 16 t/-.

25 x2 - 16 ?/2 = (5 x)2 - (4 yy.

Therefore the first factor is the sum of 5x and 4?/, and the second
factor is the difference of 5x and 4 y.

.: 25x2- 16 ?/2 =(5x4- 4 2/) (5 X- 4?/).

The intermediate steps may usually be omitted.

Ex.2. 1 -49c0=(l + 7c3)(l - 7c3).
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The difference of the squares of two numerical quantities

is sometimes conveniently found by the aid of the formula

Ex. (329)2 -(171)2 =(329 +171)(329- 171)

= 500 X 158 = 79000.

EXAMPLES X. g-.

Eesolve into factors

:

1.
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Ex. 2. Resolve into factors x^ — (2b — S c)2.

The sum of x and 2b —Sc is x + 2 6 — 3 c, and their difference is

x-{2b-Sc)=x-2b + Sc.

.-. x2 - (2 & - 3 c)2 = (x + 2 & - 3 c) (x - 2 5 + 3 c).

If the factors contain like terms, they should be collected

so as to give the result in its simplest form.

Ex.3. (3x + 7?/)2-(2x-3!/)2

= {iSx + 7 y) + {2x - Sy)}{(Sx + 7 y)-{2x - Sij)}

= (3x + 7y + 2x-3?/)(3x+7?/-2x + 3?/)

= (5x + 4?/)(x + 10?/).

EXAMPLES X. h.

Resolve into factors :

1. (a + 6)2 - c2. 4. (x + 2 yy - a\ 7. (x + 5 c)2 - \.

2. (a-6)2-c2. 5. (a + 3&)2-16x2. 8. (a-2x)2-62.

3. (x + ?/)2-4s2. 6. (x+ 5a)2-9?/2. 9. (2x-3a)2- 9c2.

10. 9x2 -(2«- 36)2. 18. (?>_c)2-(a-x)2.

11. 1 - (« - 6)2. 19. (4 a + x)2 - (6 + z/)2,

12. c2 - (5 a - 3 6)2. 20. (a + 2 6)2 - (3 x + 4 yy.

13. (a + 6)2 -(c + cO^. 21. l_(7«-36)2.

14. (a - 6)2 - (x + yy. 22. (a - 6)2 - (x - yy.

15. (7x + 2/)2-l. 23. (a-3x)2-16?/2.

16. (a + 6)2 - (to - ?i)^- 24. (2 a - 5 x)2 - 1.

17. (a - n)2 - (6 + my. 25. (a + 6 - c)2 - (x - ?/ + zy.

Resolve into factors and simplify:

26. (X + ?/)2 - x2. 27. x2 -{y - xy. 28. (x + 3 ^)2 - 4 ?/2.

29. (24 x + yy- (23 x - yy. 34. 16 rt2 - (3 a + 1)2.

30. (5x + 2?/)2-(3x-^)2. 35. (2a + 6 - c)2 -(a - 6 + c)2.

31. 9x2-(3x-5?/)2. 36. {x -7 y + zy -{7 y - zy.

32. (7 X + 3)2 - (5x - 4)2. 37. (x 4- y - 8)2 - (x - 8)2.

33. (3a + l)2-(2a-l)2. 38. (2x + « - 3)2 -(3 - 2x)2.

100. Compound Expressions Arranged as the Difference of

two Squares. By suitably grouping the terms, compound
expressions can often be expressed as the difference of two
squares, and so be resolved into factors.
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Ex. 1. Resolve into factors a^ — 2ax + x^ — 4c h'^.

'

a^ - 2 ax + x^ - 4tb^ = (a^ - 2 ax + x^) - 4:b^

=r (« - X)2 - (2 &)2

= la - X + 2b)(a - X - 2b).

Ex. 2. Resolve into factors 9a^ — c^ + icx — i x^.

9 a2 _ c2 + 4 ex - 4 x2 = 9 a2 - (c2 - 4 ex + 4 x^)

= (3«)2-(c-2x)2
= (3 « + c - 2 x) (3 a - c + 2 x).

Ex. 3. Resolve into factors 12 xy + 25 — 4x2 — 9 ?/2,

12 x?/ + 25 - 4 x2 - 9 ]f-
= 25 - (4 x2 - 12 xy + 9 if-)

= (5)2-(2x-3?/)2
= (5 + 2 X - 3 ?/) (5 - 2 X + 3 ?/).

Ex. 4. Resolve into factors 2 &d - a2 _ c2 + &2 _|_ ^^ _l_ 2 ac.

Here the terms 2bd and 2ac suggest the proper preliminary ar-

rangement of the expression. Thus

2bd- a2 _ c2 + 62 ^ t^2 _^ 2 ac = ?)2 + 2 bd + f?2 _ ^2 + 2 «c - c^

= &2 + 2 &cZ + (^2 _ (a2 _ 2 «c + c2)

= {b-\- ay -(a- c)2

= (b + d -\- a - c)(b -\- d - a + c).

EXAMPLES X. k.

Resolve into factors

:

VI. x2+2xy+ ?/2-a2. 8. ?/2-c2+ 2cx-x2.

2. a--2ab+ b^-x^. 9. l-x'^-2xi/-if.

3. x2-Gax+9a2_i6 62. 10. c2-x2-y2+ 2x?/.

4. 4a2 + 4rt6+ &2_9c2. H, x2+ ?/2+2xy-4x2?/2.

5. x2+ a2+ 2ax-?/2. 12. rt2_4(^?, + 4 52_9(^2c2,

6. 2ay+a2+ 2/2-x2. 13. x2+ 2x?/+2/2-a2-2«6-62.

7. x2-a2_2a&-&2. 14. (^2_2rt6+ &2_c2_2cd-c?2.2ab
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101. Important Cases. By a slight modification some ex-

pressions admit of being written in the form of the difference

of two squares, and may then be resolved into factors by the

method of Art. 98.

Ex. 1. Resolve into factors cc^ + x^y'^ + ?/*.

x^ + x2?/2 + y^= (X* -\- 2 x2«/2 + y^) - x^f^

= {%'' + y-^y-ixyY
= (x2 + ?/2 + xy) (x2 + y^- xy)

= (x2 + xy + ?/2) (x2 - xy + 2/2)

Ex. 2. Resolve into factors x* - 15 x'^y'^ + 9 2/*.

x4 - 15 x2?/2 + 9 2/* = (x^ - 6 x22/2 + 2/4) _ 9 .-k-22/2

= (x2-3 2/2)2-(3x2/)2

= (x2 - 3 2/2 + 3x2/)Cx2 - 3 2/2 - 3x2/).

EXAMPLES X. 1.

Resolve into factors

:

1. x4 + 16 x2 + 256. 6. 4 x4 + 9 2/4 - 93 x^y'^.

2. 81 a* + 9 «2//2 + ]ji, 7. 4 m* + 9 ?i4 _ 24 ?>i2u2.

3. x* + 2/^-7 x^if- 8- 9 x* + 4 2/4 + 11 x22/2.

4. 5,^4 + ,^4 _ 18 m'^n-. 9. x4 - 19 x:hj^ + 25 2/*.

5. x4 - 6 xY' + Z/'^-
10. 16 a'^ + b^- 28 a252,

WHEN AN EXPRESSION IS THE SUM OR DIFFERENCE
OF TWO CUBES.

102. If we divide a^ + b^ by a -\- b the quotient is

a^ — ab -f />- ; and if Ave divide a" — b^ hj a — b the quotient

is «^ + a6 4- ^'"•

We have therefore the following identities :

a^ + 6^ = (a + b){cr - ab + b")
;

«' - ^"^ = (a - b){cr + ab + Ir").

These results are very important, and enable us to resolve

into factors any expression which can be written as the sum
or the difference of two cubes.

Ex. 1

.

8 x3 - 27 2/^ = (2 x) ^ - (3 yf
= (2x-3y) (4 x2 + 6 xy + 9 2/2).

Note. The middle term 6 xy is the product of 2 x and 3 y.
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Ex.2. 64^3+ 1 =(4 «)-^ +(1)3
= (4a+ l)(i6a'-^-4a+ 1).

We may usually omit the intermediate step and write the

factors at once.

Ex. 3. 343 «6 - 27 ic3 = (7 «2 _ 3 x) (49 a^ + 21 ah: + 9 x^).

Ex.4. 8x9 + 729 =(2x3 + 9)(4r6_ 18x3 + 81).

EXAMPLES X. m.

Resolve into factors

:

1.
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Ex. 3. Resolve into factors 28 x% + 64 xMj - 60 yhj.

28 x^y + 64 xhj - 60 yhj = 4 v^ii{l ofi + 16 x - 15)

= 4.x2?/(7x-5)(.x + 3).

Ex. 4. Resolve into factors x^iil^ — 8 y^p^ — 4 or?q'^ + 32 y^g^^

The expression = p^{y? — 8 ?/3) — 4 q^{x^ — 8 y^)

= {x-2 y)(:c^ + 2 x?/ + 4 y2)(p + 2 ri)(p - 2 gr).

Ex. 5. Resolve into factors 4 x^ — 25 y^ _(_ 2 x + 5 y.

4 x2 - 25 2/2 4- 2 X + 5 y := (2 X + 5 ?/) (2 X - 5 ?/) + 2 X + 5 ?/

= (2x + 5?/)(2x-52/+ 1).

EXAMPLES X. o.

Resolve into two or more factors :

A 1. ai-y'2-2yz-z\

2. x^ — y'^z^.

3. 6 x2 - X - 77.

4. 729 2/6-64x6.

5. x5 - 4096.

6. 2 )Hw + 2 x?/ + ?Ji-+ n^— x^

7. 33 x-^ - 16 X - 65.

8. aH6*-c4-#+ 2a2^y2_5

9. m^x + JH^?/ — 'i^-^ — ^^^y-

10. (a -f 6 + c)"2 -(a-b - c)"^. 32. 14 «%3 _ 35 ^:5,.2 _^ 14 ^ix.

11. 4 + 4 X + 2 a2/ + x2 - a2 _ ?/2. 33. ^,8 _ 1,

12. x2 - 10 X - 119. 34. 1 - (m'^ + «-) 4 2 7hm.

13. ^2_/y2_c2 + ^-2_2(af?_&c). 35. 75x4-48rt^. 36. 5«4/>4-5«&.

14. x2 - a^ + 2/'-^ - 2 xy. 37. 8 x^?/ 4- 52 xy + 60 2/.

15. «2 + x^- (2/2 4- ^2) _ 2 (2/2 - «x)

.

38. 3 x22/2 4- 26 axy + 35 «2.

16. 21 x2 + 82 X - 39. 39. 720 a~b - nb'.

17. 1 - «2x2 - //2_;y2 ^ 2 a6x2/. 40. a^x^> - 64 rt2y6.

18. chl^ - r2 - a-ic%Z3 _|. «2. 41. ^12 _ ^12.

19. a^x^ - ahf - b'^x^ + ?)2y6. 42. 24 x'^y"^ - 30 .r2/3 - 36 y*.

20. x2 - 6 X - 247. 43. (a + &)* - 1.

21. «^x2 - c3x2 _ aY + c'^y-- 44. «* _ (/> + <-)4.

22. acx2 - bcx + adx - bd. 45. (c + d)^ - 1.
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46. l-(x- yy. 52. (a + by + « + &•

47. 250 (a - by + 2. 63. a^ .|, 53 + « + 5.

48. (c + fZ)H (c - ciy. 64. «2 _ 9 52 + (^ 4. 3 ^,

49. 8(x + yy-(2x- yy. 65. 4 (a; - y)''^- (x - y).

50. ic"" — 4 ?/- + X — 2 ?/. 56. x^y — x^!/^ — x?iy + x?/*.

51. a2 _ ^,2 + f^ _ jr>. 57. 4 «2 _ 9 52 4 2 « - 3 6.

58. Resolve x^^ — ?/i6 into five factors.

CONVERSE USE OF FACTORS.

104. The actual processes of multiplication and division

can often be partially or wholly avoided by a skilful use of

factors.

It should be observed that the formulae which the student

has seen exemplified in the preceding pages are just as use-

ful in their converse as in their direct application. Thus
the formula for resolving into factors the difference of two

squares is equally useful as enabling us to write at once the

product of the sum and the difference of two quantities.

Ex. 1. Multiply 2 rt + 3 6 - c by 2 « - 3 ?> + c.

These expressions may be arranged thus :

2 a + (3 ?> - c) and 2 a - (3 b-c).

Hence the product = {2 a + (3 & - c)}{2 « - (3 b - c)}

= (2 a)-2 - (3 & - c)2 [Art. 98.]

= 4 «2 __ (9 52 _ 6 &c + c2)

= 4 «2 _ 9 52 4 G &c - c2.

Ex. 2. Divide the product of 2 x^ + x - 6, and 6 x^ - 5 x + 1 by

3 x2 + 5 X - 2.

Denoting the division by writing the divisor under the dividend

(Art. 53), with a horizontal line between them, the required quotient

_ (2x2 + x-6)(6x2-5x+l)~
3 x2 + 5 X - 2

_ (2x - 3)(x + 2)(3x - l)(2x - 1)

(3x-l)(x + 2)

= (2x-3)(2x-l).
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Ex. 3. Prove the identity

17(5 a; + 3 ay^ - 2(40 x + 27 a) (5 x + 3 a) = 25 x"^ - 9 cfi.

Since each term of the first expression contains the factor 5 x + 3 «,

the first side

= (5 X + 3 «){17(5 :k + 3 «) - 2 (40 x + 27 a)}

= (5x4-3 a) (85 X + 51 a - 80 X - 54 a)

= (5 X + 3 «) (5 X - 3 a) /

= 25x2-9a2.

Ex. 4. Show that (2 x + 3 ?/ - ^)3 + (3 x + 7 y + ^)3 is divisible by

5(x + 2?/).

The given expression is of the form A^ + B^, and therefore has a

divisor of the form A-\- B.

Therefore (2 x + 3 «/ - s)^ + (3 x + 7 // + zy

is divisible by (2 x + 3 ?/ - ^) + (3 x + 7 ^ + .s),

that is, by 5 x + 10 y,

or by 5(x + 2y).

EXAMPLES X. p.

Find the product of

1. 2x- 7?/ + 3^ and 2x + 7?/- 3^;.

2. 3 x2 — 4 x?/ + 7 1/2 and 3 x^ + 4 xy + 7 y^.

3. 5 x2 + 5 xy — 9 ?/2 and 6x^ — 5xy — 9 y'^.

4. 7 x2 - 8 xy + 3 ?/2 and 7 x2 + 8 xy - 3 y2.

5. x3 + 2 x2?/ + 2 x^2 + ^3 and x^ - 2 xMj + 2 x?/2 - ?/3.

6. (X + ?/)2 + 2(x + ?/) + 4 and (x + ?/)2 - 2(x + ?/) + 4.

7. Multiply the square of a + 3 6 by a^ _ 6 «& + 9 b^.

8. Divide(4x + 3y-2s;)2_(3x-22/ + 3^!)2byx + 5?/-5^.

9. Divide x« + 16 «%* + 256 «» by x2 + 2 ax + 4 a"-.

10. Divide (x2 + 7 x + 10) (x + 3) by x2 + 5 x + 6.

11. Divide (3x + 4?/ - 2;2)2 -(2x + 3?/ - 45r)2 by x-{-y + 2z.

Prove the following identities

:

12. (a + by - (« - &)2(« -\-b) = 4: ab{a + ft).

13. c4 - # - (c - d)3(c + d) = 2 C(^(c2 - tZ2).

14. (X + yy-Z xy(x + ?/)2 = (x + y) (x^ + y^).
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15. Show that the square of x + 1 exactly divides

(a;3 + x2 + 4)3 -(x^ -2X + 3)3.

16. Show that (o :k-- 7 x+ 2) ^- (.r;-^ _ 8 .x+ 8)Ms di visible by 2 x- 3,

and by X + 2.

105. The Factor Theorem. If any i-atioyial and integral

expression containing x hecoynes equal to K^lien a is ivritten

for X, it is exactly divisible by x — a.

Let P stand for the expression. Divide P by x — a until

the remainder no longer contains x. Let li denote this

remainder, and Q the quotient obtained. Then

P= q(x-a) + R.

Since this equation is true for all values of x, we will

assume that x equals a. By hypothesis, the substitution of

a for X makes P equal to ; thus,

.-. i? = 0.

As the remainder is 0, the expression is exactly divisible

by X — a.

The following examples illustrate the application of this

principle

:

Ex. 1. Resolve into factors x^ + 3aj"^ — 13 x — 15.

By trial we find that this expression becomes when x = 3 ; hence,

X — 3 is a factor. Dividing by x — 3, we obtain the quotient

x2 + 6 X + 5.

The factors of this expression are easily seen to be x + 1 and x + 5

;

hence,
^3 + 3x2- 13x-15^(x-3)(x+ l)(x + 5).

Ex. 2. Resolve into factors x3 + 6x2 + 11 x + 6.

It is evident that substituting a positive number for x will not make
the expression equal to 0. By substituting — 1, however, for x, the

expression becomes — 1 + 6 - 11 + 6, or ; hence,

x3+ 6x2+ llx + 6

is divisible by x+1. Dividing by x+1, we obtain the quotient

x2 + 5 X + 6, and factoring this expression we have

x3_|-(5x2 + llx + 6=(x+ l)(x + 2)(x + 3).
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Note. The student should notice that the only numerical values

that need be substituted for x are the factors of the last term of the

expression, and that we change the sign of the factor substituted

before connecting it with x. Thus, in Ex. 1, the factor 3 gives a

divisor a; — 3, and in Ex. 2, the factor — 1 gives a divisor x -\- \.

Ex. 3. Without actual division, show that 5x^—6 a^^+i is divisible

by X - 1.

If the expression is divisible by x— \, it will become 0, or "vanish,"

when 1 is substituted for x. Making this substitution, we obtain ;

hence the division is possible.

EXAMPLES X. r.

Without actual division, show that x — 2 is a factor of each of the

following expressions

:

1. x^-bx + 2. 3. x3- 7^2 + 16a;- 12.

2. x^-\-x'^-'^x-A. 4. x3- 8x2+ 17a;- 10.

Determine by inspection whether x + 3 is a factor of any of the

following expressions

:

5. x3 - 7 X + 6. 7. x3 + 6 X + 6.

6. a;3 + 6x2 + llx + 6. 8. x3 + 3x2 + x + 3.

9. Show that 32xio -33x^ + 1 is divisible by x - 1.

Resolve into factors .

10. 2x3 + 4x2- 2x- 4. 11. 3^^3_6^2 _3a; + 6.

106. We shall employ the Factor Theorem in giving

general proofs of the statements made in Art. 62.

We suppose n to he a positive integer.

(I.) a;" — ?/" is always divisible by x — y.

By Art. 105, x"—y'^ is exactly divisible by x—y if the sub-

stitution of y for X in the expression x"^ — y'' gives zero as

a result. Making this substitution we have

rf.n _yn_ yn _ yn ^ Q

Therefore x" — ?/" is always divisible by x — y.

(II.) X" — y"" is divisible by x + y ichen n is even.

If this be true, the substitution of — ?/ for x in the ex-

pression x"" — ?/" gives zero as a result. Making this sub-

stitution we have

a;" -2/" = (-?/)"-?/".
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When n is even, this expression becomes ?/"* — 2/", or zero.

Therefore x"" — ?/" is divisible hj x -\- y when n is even.

(III.) .«'• + ?/" is never divisible by x — y.

Here the substitution of y for a? in the expression a;"-}-?/"

gives
^'" + ?/" = r 4-r = 2?/'.

As this expression is not zero, x"" + y'^ is neve?' divisible

by x-y.
(IV.) a^'' + T/'* is divisible by a? + ?/ when n is odd.

Here the substitution of — y for a; in the expression
^,n _|_

yri gives

^" + 2/" = (-2/)" + 2/"

When ?i is odd, this expression becomes — 2/" + 2/"? oi' zero.

Therefore x^ + ?/** is divisible hjx-\-y when n is odd.

The results of the present article may be conveniently

stated as follows

:

(i.) For all positive integral values of «,

X"- - 2/" = {x — y) (x^~^ + a;"-'2/ + x''-'^y- H h 2/""^

(ii.) When n is odd,

^.n _j_ yn ^ ^^ _|_ ^^)
(^^n-1 _ r,fi-2y _|_ a.n-3^2 (_

yu-ly

(iii.) When n is even,

107. We shall now discuss some cases of greater difficulty,

and also show how certain expressions of frequent occur-

rence, which are not integral, may be separated into factors.

The student may omit this portion of the chapter until

reading the subject a second time.

Ex. 1. Resolve cfi — Q^a^ — a^ -\- 64 into six factors.

The expression

= «3 (^6 _ 64) - (^6 _ 64)

= (a6_64)(a3_i)
= («3 + 8)(a3-8)(«3_ 1)

= (a + 2) (a--2 _ 2 a + 4) (a - 2) {cfi + 2 a + 4) (a - 1) (a2 + « + 1)

.
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Ex. 2. a {a- 1) y^-{n-h-\) ocij - h (h + 1) ?/2

= {ax-(b-^l)y}{(n-l)x + hi,].

108. From Ex. 2, Art. 59, we see that the quotient of

a^ 4- b'^ + c^ — 3 abc by « + 6 + c is a^ -\-
b'-

-\- c' — be — ca — a6.

Thus aJ' + U' + c^'-Sabc

= (a + ^ + c)(o2 _|. ^2 _|_ ^2 _ ^^^ _ ^^^ _ ^^^^^ _ _ (ly

This result is important and should be carefully remem-
bered. A¥e may note that the expression on the left consists

of the sum of the cubes of three quantities a, b, c, diminished

by three times the product abc. Whenever an expression

admits of a similar arrangement, the above formula will

enable us to resolve it into factors.

Ex. 1. Resolve into factors a^ — 6^ + c^ + 3 abc.

^3 _ 53 + c3 + 3 abc = «3 + (— &)3 + c3 - 3 a (- &) c

= (a — b + c) (a- + b'^ + c'-^ ^ i>c - ca -\- «6),

— b taking the place of b in formula (1).

Ex. 2.

x^-Sy^-21 _18x?/ = x3 + (-2?/)3+ (_ 3)^ - 3:k (- 2 ?/)(- 3)
= (x - 2y -S)(x^ + 4:y^ -{- 9 - 6 y -\- Sx + 2:ry).

109. Expressions which can be put into the form x" ± —
?f

may be separated into factors by the rules for resolving the

sum or the difference of two cubes. [Art. 102.]

Ex.1. l_27&« = f^-Y- (362)^

cc^ H— into four factors.
S_a

If

a-2^3 _^_x^-{-^ = X^((fi-l)-- (rt2 - 1)
yS yZ yS

= {a'^-l)lxi-

= (, + ,)(„_,)(.._2)^..+ ^^^4)
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EXAMPLES X. s.

Resolve into two or more factors :

1. x-ij + 3 x}/ — 3 x^ — i/. 5. n^ -\-{a + h)ax + hx^.

2. 4 mn- — 20 7i^ + 45 nm- — 9m^. 6. jm{'ni- + 1) — w(p- + m-).

3. «6(x2 + 1) + a;(«2 + ?/2). 7. G hx(a^ + 1) - a(4 x^ + 9 &2).

4. i/^z\xi - 1) + ^'^(!/* - ^^^)

•

8. (2 a2 + 3 2/2)x + (2 x^ + 3 a2)?/.

9. (2 x2 - 3 a^)>j + (2 «-' - 3 y^)x.

10. a(a - l)x- + (2 a- - l)x + a(a 4- 1).

11. 3x2-(4rt + 2?>)x + «-+ 2a&.

12. 2 a'-'x2 _ 2(3 /> - 4 c) (/^ - c) ^/^ + ahxy.

13. («2 _ 3 « + 2)x2 + (2 «2 _ 4 a + l)x + a(a - 1).

14. «(« + l)x2 + (a + b)xi/ -b(b- 1)^'-

15. 63 + c3 - 1 + 3 be. 18. a^ - 27 b'^ + c^ + 9 a6c.

16. a^ + 8 c3 + I - 6 ac. 19. «3 _ ?^3 _ c^ _ 3 «?>c.

17. a'^ + ?>3 4. 8 ^.3 _ 6 abc. 20. 8 a^ + 27 Z^^ + c^ - 18 a5c.

21.-^-1. 23. — + ^3. 25. ~ + 1000.
a3&3 125 -"

125

22. 216 a3_^. 24. Z^_i. 26. — - —

•

8 729 512 x3

27. Resolve x^ + 81 x^ + 6561 into three factors.

28. Resolve (rt^ _ 2 a'^b'^ - b^y - 4 a'^b^ into four factors.

29. Resolve 4(ff?> + cd)'^ — (a^ + b- — (fi — (V'Y into four factors.

30. Resolve x^ into four factors.
256

31. Resolve x^^ — y'^^ into six factors.

Resolve into four factors :

32. ^'-8x-«3 + 8x3. 36. ^|/i_^_J_ + ^.
x2 72 32 9 x2 4

33. x^ + xhf - 8 x^i/ -Sy^. 1-^ ^ ^
37. a;6-25x2 + 6i:-ix4.

34. ^9 + :kG + 64 x3 + 64. ^4
35. 4«-964-i|-^^

Resolve into five factors :

38. x^ + x4 - 16 x3 - 16. 39. 16 x^ - 81 x^ - 16 x* + 81.



CHAPTER XL

Highest Common Factor.

110. Definition. The Highest Common Factor of two
or more algebraic expressions is the expression of highest

dimensions (Art. 29) which divides each of them without

remainder.

The abbreviation H. C. F. is sometimes used instead of

the words highest commoyi factor.

SIMPLE EXPRESSIONS.

111. The H. C. F. can be written by inspection.

Ex. 1. The highest common factor of «*, «3, a^^ a^ is a^.

Ex. 2. The highest common factor of a%^^ ab^c'^, a-Wc is «&* ; for

a is the highest power of a that will divide a-^, «, a^ ; h^ is the highest

power of h that will divide &*, h^^ h"' ; and c is not a common factor.

112. If the expressions have numerical coefficients, find

by Arithmetic their greatest common measure, and prefix

it as a coefficient to the algebraic highest common factor.

Ex. The highest common factor of 21 rt%3^, 35«%'V, 28«3r?/4 is

7 a^xy ; for it consists of the product of

(1) the numerical greatest common measure of the coefficients

;

(2) the highest power of each letter which divides every one of the

given expressions.

EXAMPLES XI. a.

Find the highest common factor of

1. 4a62, 2cfih. 3. 6xy%, ^x'^y^zK 5. ba%^, Voahd^.

2. 3x2^2^ xhf-. 4. ahc, ^aV^c. 6. ^x-y'h'^, 12 xy^z.

92
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7. 4a253c2^ 6a%''G^. 12. 26xfz, lOOx^yz, 126 xy.

8. 7 a-b'^c^, liab'^c^. 13. a^bpxy, b-qxy^ a%xr^.

9. 49 «x'^ eSmf, SGaz"^. 14. 16a^b^c\ QOaWc^ 26 a^b^c'^.

10. liable, 34a%c, 51 «&c2. 15. SSaVft, 42 a^c^a, 30 «c%3.

11. a-%-V, &%^^ c%2?/, 16. 24a352c3^ Wa%^d^, iOa'b^c^

COMPOUND EXPRESSIONS.

113. H. C. F. of Compound ExpresHHns which can be fac-

tored by Inspection. The method employed is similar to

that of the i^receding article.

Ex. 1. Find tlie highest common factor of

4 cx^ and 2 cx^ + 4 c%2.

It will be easy to pick out the common factors if the expressions

are arranged as follows :

4 cx3 = 4 cx^,

2 cx^ + 4 c2x2 = 2 cx^{x + 2c);

therefore the H, C. F. is 2 cx^.

Ex. 2. Find the highest common factor of

3 a2 + 9 ab, a^ - 9 ab'', (fi + d^b + 9 ah'^.

Resolving each expression into its factors, we have

3a2 + 9a6 = 3rt(« + 36),

«3 _ 9 ab^ := a(a + 3 6) (a - 3 ?>),

«3 + 6 a2?> + 9 ab'- = «(« + 3 6) (« + 36);

therefore the H. C. F. is «(« + 3 &).

114. When there are two or more expressions containing

different powers of the same coinpouud factor, the student

should be careful to notice that the highest common factor

must contain the highest power of the compound factor

which is common to all the given expressions.

Ex. 1. The highest common factor of

x(a — x)'^, a{a — x)^, and 2 ax{a - xy is {a — xy.

Ex. 2. Find the highest common factor of

ax2 + 2 a2x + a^, 2 ax'^ - 4 a2x - 6 a^, 3 (ax + a'^y.
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Resolving the expressions into factors, we have

ax~ + 2 a-x + a^ = a{x- -\-1ax-\- or)

= '^•'• + '0- (1),

2 ax- — 4 a-x — G a^ = 2 a {x- — 2 ax — S a-)

= 2a(x + a)(x-Sa) . . . (2),

S (ax + a^y = S a^(x -j- ay (3).

Therefore from (1), (2), (3), by inspection, the highest common
factor is a(x + «)•

EXAMPLES XI. b.

Find the highest common factor of

1. a^ + ab, a- - b\ 12. Gbx + i by, 9 ex + 6 ry.

2. (x + y)2, x2 - y\ 13. x^ + x, (x + l)-2, r^ + 1.

3. 2 x2 — 2 a:y, a;^ — x~y. 14. a'?/ — y, x>y — xy.

4. 6 x^ - 9 a-y, 4 x2 - 9 ?/2. 15. x^ - 2 a:^ + ^^^ (a; _ y^,

5. a;3 + a;2y/, x^ + i/^-

6. a^ft - ab% a^b'^ - a-b^.

7. a^ — a-a-, «3 — ax-, a^ — ax^.

8. a- - 4 x2, rt2 _|. 2 aa;.

9. a- — a;2, a2 _ q^, a-x — ax^.

10. 4 a;2 + 2 xy, 12 a.% - 3 y\

11. 20 a; -4, 50x2-2.

23. x^ — xy'\ x^ + x'^y + xy + y'-.

24. a^-g - a%x - 6 a&2^^ ^•2^)^2 _ 4 «;j2a32 + 3 ?^3^2.

25. 2 x2 + 9 X + 4, 2 x2 + 11 X + 5, 2 x2 - 3 x - 2.

26. 3 X* + 8 x3 + 4 x2, 3 x5 + 11 a;4 + 6 x^, 3 x* - 16 x^ - 12 x2.

27. 2 x^ + 5 x3 + 3 x2, 6 x4 + 13 x3 + 6 x2, 2 x-^ - 7 x^ - 15 x2.

28. 12 X + 6 x2 + 6, 6 X + 3 x2 + 3, 18 x + 3 x2 + 15.

29. x4 + 4 x2 + 3, X* + 5 x2 + 6, 3 x* + 11 x2 + 6.

30. 2 a2 + 7 «fZ + 6 cP, 2 «« + 9 «^/ + 9 a\ a2 + 11 ad + 3 (P.

31. 2 x2 4- 8 xy + y\ 4 ./,-2 + 14 x^/ + C 2/2, 2 x2 + 10 xy + 12 ?/2.

115. H. C. F. of Compound Expressions which cannot be

factored by Inspection. To find the highest coiuinoii factor

in such cases, we adopt a method analogous to that used in

Arithmetic for finding the greatest common measure of two

or more numbers.

16.
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Note. The term greatest common measure is sometimes used
instead of highest common factor ; but, strictly speaking, the term
greatest common measure ought to be confined to arithmetical quanti-

ties ; for the highest common factor is not necessarily the greatest

common measure in all cases, as will appear later. (Art. 121.)

116. AVe begin by working out examples illustrative of

the algebraic process of finding tlie highest common factor,

postponing for the present the complete proof of the rules

we use. But we may conveniently enunciate two principles,

which the student should bear in mind in reading the

examples which follow.

I. If an expression ccmtains a certain factor, any multiple

of the expression is divisible by that factor.

II. If two expressions have a common factor, it will divide

their sum and their difference ; and also the sum and the

difference of any multiples of them.

Ex. Find the highest common factor of

4 x3 - 3 x2 - 24 X - 9 and 8 yJ^

8.'C3

2 x2 - 53 X - 39.

2x

4 x3 - 3 x2 - 24 X

4x3-ox2-21x
2x2

2x2

3x
6x

3x-9
3x-9

2x2

G x2

53 X

48 X

4x2

4x2

5 X — 21

6x- 18

X- 3

Therefore the H. C. F. is x - 3.

Explanation. First arrange the given expressions according to

descending or ascending powers of x. The expressions so arranged

having their first terms of the same order, we take for divisor that

whose highest power has the smaller coefficient. Arrange the work
in parallel columns as above. When the first remainder 4x2— 5 x— 21

is made the divisor we put the quotient x to the left of the dividend.

Again, when the second remainder 2 x2 — 3 x — 9 is in" turn made the

divisor, the quotient 2 is placed to the right ; and so on. As in Arith-

metic, the last divisor x — 3 is the highest common factor required.

117. This method is only useful to determine the com-

pound factor of the highest common factor. Simple factors

of the given expressions must be first removed from them,
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and the highest common factor of tliese, if an}^, mnst be

observed and multiplied into the compound factor given by

the rule.

Ex. Find the highest common factor of

24 x4 - 2 x^ - 60 x2 - 32 X and 18 x^ - 6 x^ - 39 x2 - 18 x.

We have 24 x^ - 2 x'^ - GO x2 - 32 x = 2 x(12 x^ - x2 - 30 x - 16),

and 18x4 -Qx^ - 39x2 - 18x = 3x(6x^ - 2x2 - 13x - 6).

Also 2 X and 3 x have the common factor x. Removing the simple

factors 2 x and 3 x, and reserving their common factor x, we continue

as in Art. 116.

2x 6x3-2x2-13x-6
6a:3-8.r2_ 8x
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pressioiis have no simple factors, therefore their H. C. F. can have

none. We may therefore reject the factor 9 and go on with divisor

3x'^ — 10 X + 7. Resuming the work, we have

X 3x3

3x3

13 x2 + 23 X

10 x2 + 7 X

21

3x2+16x-21
3 x'2 + 10 X - 7

3 x2 - 10 X + 7

3x2- 7x

3x + 7

3x+ 7

X

2)6 X- 14

3x- 7

Therefore the highest common factor is 3 x — 7.

The factor 2 has been removed on the same grounds as the factor

9 above.

Ex. 2. Find the highest common factor of

2x3+ X2-X-2 (1),

and 3x3-2x2 + .'C-2 (2).

As the expressions stand we cannot begin to divide one by the other

without using a fractional quotient. The difficulty may be obviated

by introducing a suitable factor, just as in the last case we found it

useful to remove a factor when we could no longer proceed with the

division in the ordinary way. The given expressions have no common
simple factor, hence their H. C. F. cannot be affected if we multiply

either of them by any simple factor.

Multiply (2) by 2, and use (1) as a divisor:

2x

17 X

14

2 x3 +
7

14x3+ 7x2-
14 x3 - 10 x2 -
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Note. If, in Ex. 2, the expressions had been arranged in ascend-

ing powers of x, it would have been found unnecessary to introduce

a numerical factor in the course of the work.

119. The use of the Factor Theorem (Art. 105) often

lessens, in a very marked degree, the work of finding the

highest common factor. Thus in Ex. 2 of the preceding

article it is easily seen that both expressions become equal

to when 1 is substituted for x, hence x — 1 is a factor.

Dividing the first of the given expressions by x — 1, we
obtain a quotient 2 x^ -j-Sx -{- 2. It is evident that this

will not divide the second expression, hence a; — 1 is the

H. C. F.

120. When the Method of Division by Detached Co-

efficients (Art. 63) is employed in finding the H. C. F.,

the following is a convenient arrangement.

Ex. Find the H. C. F. of

a:4 + 3 x3 + 12 X - 16 and x^ -lSx-\- 12.

We write the literal factors of the dividend until we reach a term
of the same degree as the first term of the divisor.

x^

+ 13

- 12

x^ + Sx^-{- 0+12-16
+ 13 - 12

+ 39 - 36

X -\-S; 13 +J9 - 52

The addition of the terms in the third column gives 13 x'^, which is

of lower degree than the first term of the divisor, hence we can

proceed no further with the division and have for a remainder

13 x'^ + 39 X — 52. Removing from this remainder the factor 13, as

it is not a factor of the given expressions, we have for a second divi-

sor x'-^ + 3 x — 4. The first divisor, as written before the signs loere

changed, forms the second dividend :

X-' x3 + 0x'-^- 13 + 12

-3 -3+4
+ 4 +9-12

X - 3 ;

since there is no remainder, the last divisor, as written before the signs,

ivere changed^ is the H. C. F. Thus x^ + 3 x — 4 is the H. C. F..
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121. Let the two expressions in Ex. 2, Art. 118, be

written in the form

2x' + a;- - a; - 2 =(.^' - l)(2a^2 + 3.^ + 2),

^x" - 2.r -\-x-2 ={x - 1)(3.T- + x + 2).

Then their highest common factor is x — 1, and therefore

2 x^ -[-^x-{-2 and 3 x^ -\- x -{-2 have no algebraic common
divisor. If, however, we pnt x=&, then

2.«3 + a;--.T-2 = 460,

and 3 iv'^ - 2 i«2 ^ a.- - 2 = 580

;

and the greatest common measure of 460 and 580 is 20;

whereas 5 is the numerical vahie x — 1, the algebraic highest

common factor. Thus the numerical values of the algebraic

highest common factor and of the arithmetical greatest com-

mon measnre do not in this case agree.

The reason may be explained as follows : when x = 6, the

expressions 2 ic^ + 3 ic + 2 and 3 x^ -{- x + 2 become equal to

92 and 116 respectively, and have a common arithmetical

factor 4; whereas the expressions have no algebraic com-

mon factor.

It will thus often happen that the highest common factor

of two expressions and their numerical greatest common
measure, when the letters have particular values, are not

the same ; for this reason the term greatest common meas-

nre is inappropriate when applied to algebraic quantities.

EXAMPLES XI. c.

Find the highest common factor of the following expressions

:

1. x3 + 2x2-13ic+10, x3 + ic2- lOx + 8.

2. x^ - 5a:2 _ 99x + 40, x^ - Gx^ - 86 x + 35.

3. x3 + 2 x2 - 8 X - 16, x'^ + 8 x-^ - 8 X - 24.

4. x3 - x^ - 5x - 3, x3 - 4 x2 - 11 X - 6.

5. x3 + 3x'^ - 8x - 24, x3 + 3 x2 - 3x - 9.

6. a^ _ 5 cfir^ + 7 <^a;2 _ 3 r^Z^ «3 _ 3 «;;c2 + 2 x3.

7. 2x3-5x2+ llx + 7, 4x3- 11x2 + 25x+ 7.

8. 2 x3 + 4 x2 - 7 X - 14, 6 x3 - 10 x2 - 21 X + 35.
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9. 3 x* - 3 x3 - 2 x2 - X - 1, 9 x4 - 3 x^ - x - 1.

10. 3 x^ - 3 ax2 + 2 «% - 2 a^, 3 x^ + 12 «x'2 + 2 «2.r, + 8 a^.

11. 2 x3 - 9 ax2 + 9 a% - 7 «^ 4 x^ - 20 ax^ + 20 a^x - 16 a^.

12. 10 x^ + 25 ax2 - 5 a3, 4 x^ + 9 ax^ _ 2 a% - a^.

13. 24x4y4-72x3?/2-6x2?/3-90x!/4, 6xV+13a;5|/3-4x2?/4-15x?/5.

14. 4x5a2+i0xia3_60x%4+54x2a5, 24x5aH30 x%5_i26x2a6.

15. 4x5 + 14x* + 20x3 + 70x2, Sx^ + 28x6 - Sx^ - 12x4 + 56x3.

16. 72x3-12ax2+72«2x-420a3, 18xH42ax2 - 282 a2;;c+270a3.

17. x5 - x3 - X + 1, x'^ + x^ + x* - 1.

18. 1 + X + x3 — x^, 1 - x* - x^ + x^.

122. The statements of Art. 116 may be proved as fol-

lows :

I. If F divides A it will also divide mA.
For suppose A = ciF, then mA = maF.
Thus i^ is a factor of mA.

II. If F divides A and B, then it will divide mA ± nB.

For suppose A = aF, B = bF,

then mA ± nB = 7naF ± nhF

= F(ma ± nb).

Thus F divides 7nA ± nB.

123. We may now enunciate and prove the rule for find-

ing the highest common factor of any two compound alge-

braic expressions.

We suppose that any simple factors are first removed.

(See Example, Art. 117.)

Let A and B be the two expressions after the simple

factors have been removed. Let them be arranged in de-

scending or ascending powers of some common letter ; also

let the highest power of that letter in B be not less than

the highest power in A.

Divide B hj A-, let j) be the quotient, and C the remain-

der. Suppose C to have a simple factor in. Eemove this

factor, and so obtain a new divisor D. Further, suppose

that in order to make A divisible by D it is necessary to
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multiply A by a simple factor n. Let q be the next quotient

and E the remainder. Finally, divide D hj E; let r be the

quotient, and suppose that there is no remainder. Then
E will be the H. C. F. required.

The work will stand thus

:

pA
m)C

D)nA(q
qP
E)D{r

vE

First, to show that E is a common factor of A and B.

By examining the steps of the work, it is clear that E
divides D, therefore also qD ; therefore qD -f- E, therefore

7iA ; therefore A, since 7i is a simple factor.

Again E divides D, therefore mD, that is, C. And since

E divides A and C, it also divides p^ -f C, that is, B.

Hence E divides both A and B.

Secondly, to show that E is the highest common factor.

If not, let there be a factor X of higher dimensions

than E.

Then X divides A and B, therefore B — pA, that is, C
;

therefore D (since m is a simjyle factor) ; therefore 7iA — qD,

that is, E.

Thus X divides E -, which is impossible, since by hypoth-

esis, X is of higher dimensions than E.

Therefore E is the highest common factor.

124. The highest common factor of three expressions

A, B, C may be obtained as follows

:

First determine F the highest common factor of A and B
;

next find G the highest common factor of F and C ; then

G will be the required highest common factor of A, B, 0.

For F contains every factor which is common to A and B,

and G is the highest common factor of F and C. Therefore

G is the highest common factor of A, B, C.
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Lowest Common Multiple.

125. Definitiox. The Lowest Common Multiple of two
or more algebraic expressions is the expression of lowest

dimensions which is divisible by each of them without

remainder.

The abbreviation L. C. M. is sometimes used instead of the

words lowest common multiple.

SIMPLE EXPRESSIONS.

126. The L. C. M. can be written by inspection.

Ex. 1. The lowest common multiple of a^ «^, (fi, «« is a^.

Ex. 2. The lowest common multiple of a"5'^, ah'', a^b' is a^b'^ ; for

«3 is the lowest power of a that is divisible by each of the quantities

a^, rr, «2 . and b"^ is the lowest power of b that is divisible by each of

the quantities &*, b^, h"'.

127. If the expressions have numerical coefficients, find

by Arithmetic their least common multiple, and prefix it as

a coefficient to the algebraic low^est common multiple.

Ex. The lowest common multiple of 21 a^xhj., 35 cfix^^y, 28 aHij^ is

420 a^x'^y^ ; for it consists of the product of

(1) the numerical least common multiple of the coefficients

;

(2) the lowest power of each letter which is divisible by every power
of that letter occurring in the given expressions.

EXAMPLES XII. a.

Pind the lowest common multiple of

1. x^y-, xijz. 4. V2ab,Sxy. 7. 2x,Sy,4z.

2. Sxhjz,4x^y\ 5. ar, be, ab. 8. 3x^ 4 y2, 3z^

3. 5 aV>c% 4 ab-c. 6. a'^c, bc% cb^. 9. 7 a-, 2 ab, 3R
102
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10. a%c, b^ca, c^ab. 13. S5 a'^c^ 42 aHb^, SO ac^b^

11. 5 «%, 6 C&2, 3 &c2. 14. 66 a*&%^ 44 a354c2^ 24 a'^b^c^

12. 2 x2|/3, 3 xy, 4xY' 15. 7 a% 4 ac'^ 6 ac^, 21 be.

COMPOUND EXPRESSIONS.

128. L. C. M. of Compound Expressions which can be fac-

tored by Inspection. The method employed is similar to

that of the preceding article.

Ex. 1. The lowest common multiple of Qx^(a — x)'^, 8<:i^(a — x)'^

and 12 ax{a — xy is 24 a^x:^(^a — x)^.

For it consists of the product of

(1) the numerical L. C. M. of the coefficients
;

(2) the lowest power of each factor which is divisible by every

power of that factor occurring in the giveii expressions.

Ex. 2. Find the lowest common multiple of

3 a^ + 9 ab, 2 a^ _ is «6-2, aS + e a^b + 9 ab'^.

Sa^ + ^:)ab = 3a(« + 3 5),

2 a^ - 18 a&'2 = 2 rt(a + 3 />) (« - 3 6),

a^ + Qa-b^^ab'^ = a{a + Zb){a^Sb)
= a(a + 3 6)2.

Therefore the L. C. M. is 6a(« + 3 by\a - 3 b).

EXAMPLES XII. to.

Find the lowest common multiple of

1. x^, x^ - 3 X. 2. 21 x^ 7 x:\x + 1). 3. a- + ab, ab + fe^.

4. 4 x^y — y, 2 x2 + x. 10. (a — x)'^, cfi — xP-.

5. 6x2 -2x, 9x2 -3a;. 11. (1 + x)3, 1 + r^.

6. x2 + 2 X, x2 + 3 X + 2. 12. x^ + 4 x + 4, x2 + 5 x + 6.

7. x2 - 3 X + 2, x2 - 1. 13. x2 - 5 X + 4, x2 - 6 x + 8.

8. (« + x)3, cfi + x3. 14. 1 - x^ (1 - x)3.

9. «2 + ^2^ ((^ + ^)2^ 15. (^ _ ^;)3^ ^3 _ a;3.

16. x2 + X - 20, x2 - 10 X + 24, x2 - x - 30.

17. x2 + a; - 42, x2 - 11 X + 30, x2 + 2 X - 35.

18. 2 x2 + 3 X + 1, 2 x2 + 5 X + 2, x2 + 3 X + 2.

19. «2 _ rj;l^ (« _ ^)2^ ^3 _ ^3.
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20. Sx^ + Ux + e, 3 :c2 + 8 X + 4, x- + 5 .r + 6.

21. 5 x2 + 11 ic + 2, 5 X- + 10 X + 3, :*;- + b x + 6.

22. 1 + x^ (1 + a;)--2, 1 + x^.

23. 2 a:2 + 3 X - 2, 2 x- + 15 x - 8, x^ + 10 x + 16.

24. 3 x2 - X - 14, 3 x2 - 13 X + 14, x"^ - 4.

25. 12 x2 + 3 X - 42, 12 x^ + 30 x^ + 12 x, 32 x^ - 40 x - 28.

26. 3 X* 4- 26 x3 + 35 x^, 6 .x^ + 38 x - 28, 27 x^ + 27 x^ - 30 x.

27. 60 X* + 5 x3 - 5 x2, 60 x'^ij + 32 xy + 4 ?/, 40 x^^ - 2 x^y - 2 x?/.

28. 8 X? - 38 x?/ + 35 ?/"', 4 x^ - x?/ - 5 ?/2, 2 x^ - 5 x?/ - 7 /-,

29. 12 x2 - 23 xy + 10 i/^, 4 x2 - 9 x?/ + 5 y^, 3 x2 - 5 x?/ + 2 ?/2.

30. 6 ax3+7 «2j;2_3 ^^3^;, 3 rt-2j;2+ 14 o^x - 5 «^ 6 x2+39 «x+45 «2,

31. 4 ax'V"+ 11 axy-— 3 ay-, 3 x^^=^+ 7 x-^=^— 6 x^^, 24 ax-— 22 ax+ 4 a.

129. L. C. M. of Compound Expressions which cannot be

factored by Inspection. AYhen the given expressions are

such that their factors cannot be determined by inspection,

they must be resolved by finding the highest common factor.

Ex. Find the lowest common multiple of

2 x* + x3 - 20 x2 - 7 X + 24 and 2 x^ + 3 x^ -^ 13 x2 - 7 x + 15.

The highest common factor is x2 + 2 x — 3.

By division, we obtain

2 x4 + a;3 - 20 x2 - 7 X + 24 =(x2 + 2 X - 3)(^ x2 - 3 X - 8).

2 a:* + 3 x3 - 13 x? - 7 x + 15 = (x^ + 2 x - 3) (2 x2 - x - 5).

Therefore the L. C. M. is (x2+ 2 x-3)(2 x- - 3 x-8)(2 x2-x-5).

130. We may now give the proof of the rule for finding

the lowest common multiple of two compound algebraic

expressions.

Let A and JB be the two expressions, and F their highest

common factor. Also suppose that a and h are the respec-

tive quotients when A and B are divided by F\ then

A = aF, B = hF. Therefore, since a and h have no com-

mon factor, the lowest common multiple of A and B is

ahF, by inspection.
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131. There is an important relation between the highest

common factor and the lowest common multiple of two ex-

pressions which it is desirable to notice.

Let F be the highest common factor, and X the lowest

common multiple of A and B. Then, as in the preceding

article,

A = ciF, B = bF,

and X = abF.

Therefore the product AB = aF x hF
= Fx abF
= FX (1).

Hence the product of tico expressions is equal to the product

of their highest common factor and lowest common multipAe.

Again, from (1) X =^=^ x iJ = | x J

;

hence the lowest common multiple of two expressions may be

found by dividing their product by their highest common fac-

tor ; or by dividing either of them by their highest common
factor, and multiplying the quotient by the other.

132. The lowest common multiple of three expressions

A, B, C may be obtained as follows :

First find X, the L. C. M. of A and B. Next find T, the

L. C. M. of X and C; then Y will be the required L. C. M.
of A, B, a
For Y is the expression of lowest dimensions which is

divisible by X and C, and X is the expression of lowest

dimensions divisible by A and B. Therefore Y is the ex-

pression of lowest dimensions divisible by all three.

EXAMPLES XII. c.

1. Find the liighest commou factor and the lowest common multi-

ple of a:- - 5 .-« + 6, x^ - 4, x^ - 3 a; - 2.

2. Find the lowest common multiple of

ab(x~ + 1) + x(«- -K b') and ab^x- - 1) + x{a- - b-).

3. Find the lowest common multiple of xy — hx, xy — ay,

y'^ — Sby + 2 b'^, xy — 2bx — ay + 2 ab, xy — bx — ay + ab.
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4. Find the highest common factor and the lowest common multi-

ple of a:^ + 2 x-^ - 3 a:, 2x^ + bx^ -^x.

5. Find the lowest common multiple of

\-x, (1 - a:-2)2, (1 + xy.

6. Find the lowest common multiple of

x^ - lOx + 24, a;'2 - 8x + 12, x^-Qx-\- 8.

7. Find the highest common factor and the lowest common multi-

ple of 6x3 + x2 - 5x - 2, 6x3 + 5x2 - 3x - 2,

8. Find the lowest common multiple of

(&c2 - aUy, h-\ac^- - a-3), a^c^ + 2ac^-\- c\

9. Find the lowest common multiple of

X-' - 2/3, x3|/ - y-i, y\x - y)-, x^ + x?/ + ?/2.

Also find the highest common factor of the first three expressions.

10. Find the highest common factor of

6x-^- 13x + 6, 2x2+ 5x- 12, 6x2 -x- 12.

Also show that the lowest common multiple is the product of the

three quantities divided by the square of the highest common factor.

11. Find the lowest common multiple of

x^ + ax^ + a^x + «4^ ^.4 ^ (-^2^2 ^ (-^4_

12. Find the highest common factor and the lowest common multi-

ple of 3 x^ — 7 x-y + 5 X2/2 — y^^ x^y + 3 xy- — 3 x^ — y^,

3 x^ -f 5 x'^y + xy- — y^.

13. Find the highest common factor of

4x3- 10x2 + 4x + 2, 3x4-2x3-3x + 2.

14. Find the lowest common multiple of

a2 _ />2, rt3_ ^3^ ^3 _ (^j2/, _al2_2 &3.

15. Find, the highest common factor and the lowest common multi-

ple of (2 x2- 3 a2)y + (2 a2 _ 3 ^2)^.^ (2 a^ + 3 y^)x + (2 x2 + 3 a^)y.

16. Find the highest common factor and the lowest common multi-

ple of x3 - 9x2 + 26x - 24, x^ - 12 x2 + 47 x - 60.

17. Find the highest common factor of

x3 — 15 «x2 -f 48 «2x + 64 a^, x2 — 10 ax + 16 a-.

18. Find the lowest common multiple of

21 x(x^ - ^2)2^ 35(xV _ xY)y 15 «/(x2 + xyy\



CHAPTER XIII.

Fractions.

133. Definition. If a quantity x be divided into h

equal parts, and a of these parts be taken, the result is

called the fraction - of x.

If X be the unit, the fraction - of x is called simply " the
b

fraction - "
;
so that the fraction - represents a equal jxirts,

h h

b ofivhich make up the unit.

The quantity above the horizontal line is spoken of as

the numerator, and that below the line as the denominator

of the fraction.

134. A Simple Fraction is one of which the numerator

and denominator are whole numbers.

REDUCTION OF FRACTIONS.

135. To reduce a fraction is to change its form without

changing its value.

136. To prove that - = ^, where d^ b^ m are positive
mo

integers.

By - we mean a equal parts, b of which make up the

unit, (1)

;

by ^ we mean ma equal parts, mb of which make up
'''^

the unit, (2).

107
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But b parts in (1) = mb parts in (2)

;

.-. 1 part in (1) = m parts in (2) ;

.'. a parts in (1) = ma parts in (2) j

a _ ma
b mb

that is,

Conversely,
ma _ a

mb b

Hence, The value of a fraction is not altered if ive multiply

or divide the numerator and denominator by the same quantity.

137. Reduction of a Fraction to its Lowest Terms. As
shown in the preceding article an algebraic fraction may
be changed into an equivalent fraction by dividing numera-

tor and denominator by any common factor ; if this factor

be the highest common factor, the resulting fraction is said

to be reduced to its lowest terms.

Ex. 1. Reduce to lowest terms
24a%2x3

36 «5x2

24 aH'^x^ ^ 23 X 3 aH^x^ _ 2c^^

36 a^x^
~ 22 X 32 a^x?

~
3 a2

*

24 a3c%2
Ex. 2. Reduce to lowest terms

18 dhi^ - 12 a%3

24 a%2x2 24 (fii^x:^ 4 ac^

18^3x2 _ 12 aH^ 6 a'^xX^ a-2x) 3a -2x

Ex. 3. Reduce to lowest terms
^^^~^^-^

>

9xy -12 y^

6 x2 — 8 xy _ 2x(3a; — 4?/) _ 2x
9xy - \2y^~ Sy(Bx - 4y)

~ Sy

Note. The beginner should be careful not to begin cancelling

until he has expressed both numerator and denominator in the most

convenient form, by resolution into factors where necessary.

EXAMPLES XIII. a.

Reduce to lowest terms :

. 12^mn^^
g

ax g abx + bx"^

15 mhip^ '

a^x^ — ax ' arx + cx^

2 4Gx^y^z\ 4 3 a2 _ 6 ab g _ l^a^-b'^c

69 x'^y^z* 2 a-^b - 4 ab'^ 100 (a^ - a:^b)
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^ 4a;2-9y2
g

x(2 g^ - 3 aa;)
_ ^^ (a;?/ -3?/)

2

' 4 a;^ 4- 6 xy
'

a(4 a'-^x — 9 aj^)
'

xhj'^ — 27 2/^

g 20 (x'^ - ?/3)
^Q

x3 - 2 X7f ^2 a;2-5x
6 x^ + 5 x?/ + 5 1/'^ X* — 4 x^y'^ + 4 2/* x^ — 4 x — 5

^g 3 x^ + 6 X
j^g

a;3y + 2 a;^^; ^ 4 ^^y

*

x2 + 4 X + 4* '

x3 - 8

j4 5a36 + 10a^6^
Ig

3 g^ + 9 a^b + 6 ^252

3 a-b-^ + 6 a&3
"

' a^^a^b-2 dW

^Y
x4-14x'-^- 51

jg
2x2 + 17X + 21 g^ 3 x^ + 23 x + 14

X* - 2 x2 - 15
'

'

3 x2 + 26 X + 35* ' 3 x- + 41 x + 20*

j^g
x^ + xy - 2 y2 g^

«%2 _ 16 (^2

^^
27 a + g^

x3 - ^3
•

ax?' + 9 «x + 20 «' 18 « - 6 g2 + 2 d^'

138. When the factors of the numerator and denominator

cannot be determined by insj^ection, we find the highest com-
mon factor, by the rules given in Chapter xi.

Ex. Reduce to lowest terms
^x^ - 13x2 + 23x - 21

15x3 - 38x2 -2x + 21

First Method. The H. C. F. of numerator and denominator is

3x-7.
Dividing numerator and denominator by 3x — 7, we obtain as re-

spective quotients x2 — 2 x + 3 and 5 x2 — x — 3.

3x3-13x2 + 23x-21 (3x-7)(x2-2x + 3) x2-2x + 3
Thus

15x3 - 38x2 -2x + 21 (3x-7)(5x2-x-3) 5x2- x-3

This is the simplest solution for the beginner ; but in this

and similar cases we may often effect the reduction without

actually going through the process of finding the highest

common factor.

Second 3fethod. By Art. 116, the H. C. F. of numerator and
denominator must be a factor of their sum 18x3 — 51x2 + 21 x, that

is, of 3x(3x — 7)(2x — 1). If there be a common divisor it must
clearly be 3 x — 7 ; hence arranging numerator and denominator so as

to show 3 X — 7 as a factor,

the fraction ^ ^^(3x - 7)- 2x(3x - 7)+ 3(3x - 7)

5x'^(3x-7)-x(3x-7)-3(3x-7)

_ (3 X- 7)(x2-2x + 3) ^ x2-2x4-

3

-(3x-7)(5x2-x-3) 5x2 -x-3*
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139. If either numerator or denomiiiator can readily be

resolved into factors we may use the following method.

Ex. Reduce to lowest terms
x^-hox^-4x

7 a:3 - 18 x2 + 6 ic + 5

The numerator = x{x^ + 3x — 4) = x(x + 4) (x — 1).

Of these factors the only one which can be a common divisor is

the fraction - x(x + 4)(x-l)
7x2(x-l)-llx(x- l)-5(x- 1)

x{x + 4) (x - 1) _ x(x + 4)

(x - 1) (7 X- - 11 X - 5)
-

7 x2 - 11 X - 6'

EXAMPLES XIII. b.

Reduce to lowest terms :

J
a^ - a^b - ah-^ -2b^ g 4 x^ + 3 ax^ + a^

a^ + 'Sa^b + S ab'^ + 2 6^ x^ + ax^ + ««x + a*

2 x3-5x2 4- 7x-3
jQ

4x3- 10x2 + 4x + 2

x3-3x + 2 "

'

3x4-2x3-3x + 2
'

3 ft3 + 2 gg - 13 « + 10
jj

16x^-72x%^ + 81a^

a^ + a'^-10a-\-S ' ' 4x2 + 12 ax + 9 a^

^ 2 x3 + 5 x^j/ - 30 X//2 + 27 ?/
^g

6x3 + x2-5x-2
4x3 + 5x^/2-21 2/3 6x3 + 5x2-3x-2'

g 4 fl3 +12 a25 _ aj^-2 _ 15 jr^s

^^
Sx^ + 2x2 - 15x - 6

6a3 + 13a26_4a62- 15 63
^

7x3 - 4x2 - 21 x + 12

g 1 + 2 x2 + x3 + 2 x^ j^ 4x4 + 11x2 + 25 -

1 + 3x2 + 2x3 + 3x4' ' 4x4- 9x2 + 30x-25"

7 x2-2x+l jg 3 x3 - 27 rtx2 + 78 a23; _ 72 ^a

3 x3 + 7 X - 10 2 x3 + 10 «x2 - 4 rt2x _ 48 a^

3 a3 _ 3>a25 + ^^52 _ 53
^^ ax3 - 5 a^x^ - 00 ff3a; + 40 gi

4 a2 - 5 «6 + 62 '
•

a:* - 6 ax3 - 80 a-x'^ + 35 a^x

MULTIPLICATION AND DIVISION OF FRACTIONS.

140. Rule I. To multiply a fraction by an integer. 3Iulti-

ply the numerator by that integer ; or, if the denominator be

divisible by the integer, divide the denominator by it.
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The proof is as follows

:

(1) - represents a equal parts, b of which make up the

unit ; — represents ac equal parts, b of which make up the

unit ; and the number of parts taken in the second fraction

is c times the number taken in the first

;

that is, - X c = —'
b b

(2) ±xd = ~ = -. [Art. 136.1
bd bd b

Hence - xb =— = a; that is, the fraction - is the quantity

which must be multiplied by b in order to obtain a. Now
the quantity which must be multiplied by b in order to

obtain a is the quotient resulting from the division of a by 6

[Art. 53] ; therefore we may define a fraction thus : the

fraction - is the quotient of a divided by b.

141. Rule II. To divide a fraction by an integer. Divide

the numerator, if it be divisible, by the integer ; or, if the numer-

ator be not divisible, midtiply the denominator by that ii\^ger.

The proof is as follows :

(1) ^ represents ac equal parts, b of which make up the

unit ; - represents a equal parts, b of which make up the

unit.

The number of parts taken in the first fraction is c times

the number taken in the second. Therefore the second frac-

tion is the quotient of the first fraction divided by c

;

that is, ^^c=^-.
h b
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(2) But if the numerator be not divisible by c, we have

a _ ac
,

.'. - -J- c = — -^ c = — , by the preceding case.
h be be

142. Rule III. To multiply together two or more fractions.

MidUphj the mimerators for a new numerator, and the denomi-

nators for a new denominator.

To find the value of - x -•

b d

X ^ a c
Let a; = - X -•

b d

Multiplying each side by 6 x d, we have

X X b X d = - X - X b X d
b d

= -x/^X-Xc? [Art. 37.]
b d

= axc. [Art. 140.]

.-. xbd = ac.

Dividing each side by bd, we have

x=^;
bd'

a c _aG
b d~bd

Similarly, - x - X - =—
; and so for any number of

b d f bdf

fractions.

143. Rule IV. To divide one fraction by another. Invert

the divisor, and proceed as in multiplication.

Since division is the inverse of multiplication, we may

define the quotient x, when y is divided by ^, to be such that
a

c a

d b
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Multiplying by -', we have xx-X- = -X-',
c d c b c

Hence ^-^^=.^ = ^x^. [Art. 142.]
b d be b G

-^

Ex. 1. Simplify ^x^x^^.

The expression 2 x 3 x 5 x «6c3 Sc^

X 4 X 6 X a^b-^c 12 a^b

Ex. 2. Simplify
^^'^ + '^^ x ii^!^:!^.

4 «3 12 a + 18

2ffi2 + 3 «
^^^

4 «2 _ ^^ ^ ^^(2 g 4- .S) ^ 2a(2a-3) _ 2(?-.3

4a3 12 a + 18 4«3 6(2« + 3) ~ 12 a '

by cancelling those factors which are common to both numerator and
denominator.

Ex.
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g 16x^-9cfi ^ x-2 j2 x2 + 3 a; + 2 ^ x^ + lx-^ 12

x^-4: 4 X - 3 a'
*

x2 + 9 jc + 20 x2 + 5 x + 6
'

jQ
25«2-62 ^ x(3a+2) j3 2x2 + 5x + 2 ^ x2 + 4x

9 «2x2 -4x2 5 a + 6 '

"

x2 - 4 2x2 + 9x + 4*

, - x2 + 5 X + 6 x2 - 2 X - 3 j^
?>* - 27 6 ^ 4 62 _ 25

x2-l x2-9 " 2&2 + 56 2 62_ii?, + i5*

. _ 2 x2 + 13 X + 15 ^ 2x2 + 11 a; + 5

4x2-9 4x2-1

16 3 a2 -j- 3 ax ^2a^-\- ax- 3 x2

17.

18.

(a - x)2 a2 _ ^2

x2- 14x- 15 . x2-12x-45
x2_4x-45 x2-6x-27*
2 + 5x + 3x2

.
4x2

_

(1 + X)3 1 + X^'

irt 2x2 -X- 1 ^ 4x2 + x - 14
ly. X •

2 x2 + 5 X + 2 16 x2 - 49

20
^'^ - 2 a& - 3 62 _^ ^2,4^5 +3 62

(a + 6)3 a3_,.53

x^ - 6 x2 + 36 X . x> + 216 X

x2 - 49 x2 - X - 42'

64 p2^2 _ g.4 (x - 2)2 _ x2 - 4

x2 -4 ^ Spg + Z^ ' (X + 2)2'

(^2_2a- 3 ^
^2- a- 12

21.

(a + 3)2 a2 4. 9

^2 _ X - 20 , x2 - X - 2 . X + 1

x2 - 25 x2 + 2 X - 8 x2 + 5 X

25
a;2 - 18 X + 80 ^ x2 - 6 x - 7 ^ x+ 5

•

x2 - 5 X - 50 x2 - 15x + 56 x - l'

26
l-^' s.l-3^' + 2x3

1 - x3 (1 - x)3

52_5x_14^x2-llx+18 . x2-16x+63
(x — 2)2 x2 — 4 ax^ — 4 a2x + 4 ax

ADDITION AND SUBTRACTION OF FRACTIONS.

i/i/i^. fli<? ad -j- be
144. To prove 7 + ,=—73

b cf bd

We have
a,^ml

^^^^^
c^hc

^^^^ ^3^ -j

b bd d bd
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The lowest common denominator is 6 ax{x — d)(x + a).

We must, therefore, multiply the numerators by 3 x(x + a) and 2 a

respectively.

Hence the equivalent fractions are

16xHx + a) ^^^ Sa^

6 ax{x — a) (x + «) 6 ax(x — a){x -\- a)

146. We may now enunciate the rule for the addition or

subtraction of fractions.

Rule II. To add or subtract fractions. Reduce tliem to the

lowest common denominator ; add or subtract the numerators,

and retain the common denominator.

Ex. 1. Find the value of
^^+^ + bx-4:a

^

3« 9a

The lowest common denominator is 9 a.

Therefore the expression = 3(2a; + a)+ 5x. - 4 a

_ n .r + .3 ft + 5 y — 4 g _ \\x — a~
9a ~ 9a

Ex. 2. Find the value of ^—^ + ^^^^^ - §-^-=1^.
xy ay ax

The lowest common denominator is axy.

a(x - 2 ?/) + x(S y -a)- y(Sx-2a)
Thus the expression

axy

ax — 2ay + S xy — ax — 3xy + 2 ay

axy

since the terms in the numerator destroy each other.

= 0,

EXAMPLES XIII. d.

Find the value of

1 2.X- 1 x-6 a:-

4

^ 2 .r + 5 x -\-

S

27364* X 2x Sx^'

2 2 a; -3 .r + 2 5.r + 8 ^ a - ?) & - c c - a

9 6 12 * 'ah be ca

x-l
,
x-9 x + S r. o -2h a-bh .a + 7b

3. — -\ b. h -•

15 25 45 2 a 4 a 8 a
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Y
a-x a + X _ a^ - x?

^ ^^ 2_ _ 3 f- - x?- xy + y^

X a 2 ax '

xij xjf xrif-

g 2 a^ - h'^ Ij^ -c-2 c^ - gg
^^ 2 a; - 3 j/ Sx-2z 5

a- ?>'- c"'^ xy xz x

9 ^ ~ ^
I

^'' — ^ _ 8 — x^ j2 g^ — 6c _ ac — 6"^ _ ab — (?-

5x 10 x^ 15a;3 ^c ac a6

Ex. 3. Simplify
^x-?.a _ 2x-a ^

x — 2a X, — a

The lowest common denominator is (.->: — 2 «)(a^ — «).

Therefore the expression = (^ ^ - ^ «)(^: - a)-(2 x - a)(a: - 2 g)

(.'>; - 2 «) (.r - a)

_ 2 x^ - 5 g.y + 3 cfi - (2 x?- - 5 «x + 2 ^2)~
(x — 2 a) (x — «)

^ 2 x2 - 5 «a- + 3 g^ _ 2 a;2 + 5 gx - 2 g^

(x — 2 g) (x — g)

g-

(x — 2 g) (x — g)

Note. In finding the value of such an expression as

-(2x-g)(x-2g),

the beginner should first express the product in brackets, and then
remove the brackets, as we have done. After a little practice he will

be able to take both steps together.

The work will sometimes be shortened by first reducing

the fractions to their lowest terms.

Ex.4. Simplify
^^ + 5x//-4^/^ 2xy

,

x2-16?/2 2x2 + 8 xy

The expression = ^-^ + 5x^-4.^2 _ y

x2 - 16 ?/2 X + 4 ?/

_ x2 + 5 xy — 4 ?/2 — ?/(.!• — 4: y)~
X2^- 16 ?/2

_ x2 + 5 xy - 4 ?/2 - xy + 4 y-

x2 - 16 ^2

x2 + 4 X?/ _ X

x2-16?/2 x-iy
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EXAMPLES XIII. e.

Find the value of

1
1

I

1
. 4 a h__^

^ £±l_£Lzil.
' x + 2 x + 3

'

x-j- a x+ b 'x-2 x + 2

2 _2 1__^ g
r^ . h g a: — 4 x — 7

x+3 x + 4 X — a X — ?) X —

2

x —

5

Q 3 ]__^ g
a 4- X _ g — X g « «-^

X— 6x + 2 a— x« + x X — a

10. -A- +—^ 18. - + ^
x-^-4 (x-2)2 x(x-?/) y{x + y)

11. .^_ + ^iL_. 19.
2 2

9 a(x"-^ — «'^) x(x + a)

12. ^ ^+^
. 20.

^y + ^

2 X — 3 y 4 x-^ — 9 ?/2 25 x^ — ^/^ 5 x + y

13. ^^ ?^ 21. L^+ ^
1 - x3 (1 - x)3 a:(x-^ - 2/2) ?/(x-2 4- ?/2)

14 ^ + ^< _ a:^ + 2 g^
^ ^^ 3-. _|. ^^ .^^ _ a

' X - 2 a x2 - 4 a'^'

15. i«l±_^_2«^^. 23.
4 «- - 52 2 « + 6

16. ^£i__^^. 24.
X- — y'^ X + y X -\- y x — y

l,j
__x oc_

25.
1 (a + 2x)2

1 — x^ 1 + x^ a — 2 X «-^ — 8 x^

(x2 + a^) (x + a)^

x'^ — 4 g'^ X + 4q
x^ — 2 «x X + 2 «

x^ + xy + ?/2
I

X" - xy + //^

2g
^3 + 6-3 r<3 - 63

a^ - ab + ^2 a^ + a/j + 6^

147. Some modification of the foregoing general methods

may sometimes be used with advantage. The most useful

artifices are explained in the examples which follow, but no

general rules can be given which will apply to all cases.

Ex. 1. Simplify
a±S _a±4 8_.
a — 4 rt — 3 «2 _ 1(3

Taking the first two fractions together, we have the expression

^ cfi_Q^(a2_iQ) _ 8 ^ 7 8

(a-4)(a-3) a^ - IG (a-4)(«-3) (a + 4)(a-4)
7(a + 4;)-8(a-3) 62 - a

""
(a + 4) (a - 4) (« _ 3;

"
(a + 4) (a - 4) (a - 3)

'



FRACTIONS. 119

Ex. 2. Simplify
^

•
^

2 x^ -f a: - 1 3 a:'-^ + 4 a; + 1

The expression
(2x-l)(;«+l) (3x+l)(x + l)

3x+l+2a;-l
(2a;-l)(ic + l)(3a:+l)

(2 a:- l)(ic+ l)(3x+ 1)

. Ex. 3. Simplify -J ^ ^x 4^
\J a — X a -\- X cfi -\- x^ a^ + x^

Here it should be evident that the first two denominators give

L. C. M. a'^ — ic2, which readily combines with a^ + x"^ to give L. C. M.
a^ — X*, which again combines with a* + x* to give L. C. M. a^ — x^.

Hence it will be convenient to proceed as follows

:

The expression =
a^ - x2

a -\- X —{a — x)

2x 2x
a^ — x^ (fi -\- x^

4 x3 4 x3 8 x"^

«4 _ ^4 a^ ^ x* «8 - x8

EXAMPLES XIII. f.

Find the value of

1 1 , 2x o 1

x + y x-y x^-y^ 2(a-6) 2(« + &) «2_52

1^1 3x „ 1 , 2 , 3

2x + y 2x-y 4 x^ - ?/2 l+x 1 - x"-^ (1 + x)^

3 __5 3x 4-13x jQ 2« 5 4 (3a+ 2)

l + 2x l-2x l-4.x2' 2«-3 6rt+ 9 3(4«2_9)'

4.
2«

^
35 8&-2-

^^^
3

^
2

^

5x
2a+ 3 5 2a-3 6 4a-^-db- x-2 3x + 6x2-4

5.
1

I

1 1_. 12 -^ r_.i ^!L±^.
' « + X (a + x)2 a^ - x2 x^ + ?/3 x^ - yS ^e _ yd

6. J^-- 2 1_. j3^ 1 ^ 1

9 - a2 3 + a 3 - a a;^ - 9 x + 20 x---Ux + 80

7. ^-?! L_+ 1 . 14.
1 1

6(a:2-l) 2(x-l) 3(j;+I) x^ - 7 a; + 12 a-2 - 6 x +
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15. —J 1 17.
*

2oi^ -x-l 2x^ + x-^ A -1 a-2cfi 3 - a - 10 a^

16. I § 18.
'' 2

19.

2x2 -x-1 Qx^-x-2 5 + a:-18x- 2 + 5x + 2x2

1 1
,

1

x+1 (x+l)(x + 2) (x + l)(x + 2)(x+3)

20
5x 15(x-l) 9(x + 3)

2(x+l)(x-3) lG(x-3)(x-2) lG(a: + l)(x-2)'

21
« + 35 « + 2 /> f< + ?>

' 4(« + 6)(a + 2&) (a + 6)(« + 3/>) 4(a + 2 6)(a + 3 6)'

22. —^ + 2 1

23.

X- - 3 X + 2 x2 - X - 2 x2 - 1

X ,
15 12

x"^ + 5 X + 6 x2 + 9 X + 14 x2 + 10 X + 21

3 4 4 X + 2

x2-l 2x+l 2x2+3x+l

25
5(2x-3) 7x 12(3x+l)

ll(6x2 + x-l) 6x2+ 7x- 3 11(4x2 + 8x + 3)*

26
^ ~ ^ _ ^ ~ ^

I

1 oq1+2^« l-2a 8«
x + 2 x + 3 x-1 l-2« l + 2rt (l-2rt)

27
a; - 3 x + 4 5 29 ^ ^ ^"

X - 4 x + 3 x2 - 16 1 + X 1 + x3 (1 - x)3

30.
24 X 3 + 2 X

^

3 - 2 X

9- 12 x + 4 x2 3-2 X 3 + 2x

31. -J: I ^^. 32.
^ + 1

4«
3 - X 3 + X 9 + x2 2 a + 3 2 a - 3 4 (/2 + 9

33. _^- +_^+ 1

4(l + x) 4(1 -x) 2(l + x2)

34. ^_+ 1

(a - x) 8 (rt + x) 4 (rt2 + a:"-)

35. ^^+1 ^

4 + x2 2-x 2 + x 3-6x 3 + 6x 2 + 8 x2

37.
^- ^ + 1

2 « - 8 X 3 a2 4- 48 ic2 2 a + 8 x

38.
^- +—1 ^

. 39. 2^ "^^ ^^'

6 «2 + 54 3 « - 9 3 r/2 _ 27 2 + x (2 + x)2 4 - x2

40. ^1^ ,-1-+ ^
8-8x 8 + 8x 4 + 4 x2 2 + 2 x*
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148. We have thus far assumed both numerator and

denominator to be positive integers, and have shown in

Art. 140 that a fraction itself is the quotient resulting from

the division of numerator by denominator. But in alge-

bra division is a process not restricted to positive integers,

and we shall now extend this definition as follows : The

algebraic fraction - is the quotient resulting from the division

of a by b, where a and b may have any values ivhatever.

149. By the preceding article -^^— is the quotient result-

ing from the division of — a by — & ; and this is obtained by

dividing a by b, and, by the rule of signs, prefixing +

.

Therefore :=4* = + ^ = ^ (1).— b b b

Again, ^^^ is the quotient resulting from the division of
b

— a by b ; and this is obtained by dividing a by b, and, by

the rule of signs, prefixing —

.

Therefore 11^ = -^ (2).
b b

Similarly, -^ = -^ (3).

These results may be enunciated as follows

:

(1) If the signs of both numerator and, denominator of a

fraction be changed, the sign of the whole fraction ivill be un-

changed.

(2) If the sign of either numerator or denominator alone

be changed, the sign of the ivhole fraction ivill be changed.

The principles here involved are so useful in certain cases

of reduction of fractions that we quote them in another

form, which will sometimes be found more easy of application.

1. We may change the sign of every term in the numerator

and denominator of a fraction tvithout altering its value.

2. We may change the sign of a fraction by simjily changing

the sign of every term in either the numerator or denominator.
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Note. The student should keep clearly in his mind the distinction

between tenn and factor. The rule governing change of sign for

factors will be given in Art. 150.

Ex 1
'' ~ ^^ = -h + a _ a - h

Ex. 2.

Ex. 3.

11 -X - y -{- X X- If

X — >•- _ _ — X -{- x- _ _ ./•- — X

2y
~

2y ~ 2y '

3 x 3 X 3 X

4 — a;- — 4 + :c- x~ -^ 4:

The intermediate step may usually be omitted.

Ex. 4. Simplify -^L_ + _1^ + a(Sx-a)^
X + a X — a a- — x-

Here it is evident that the lowest common denominator of the first

two fractions is x- — a-, therefore it will be convenient to alter the sign

of the denominator in the third fraction.

Thus the expression = —^ + -^-^ - ^K^a;-^)
X + a X — a X- — cfi

_ a(x — g) + 2 x(x + a)— a(Sx — a)

X? - a2

_ ax ~ a'^ ^ 2x^ + 2 ax- S ax + a'^ _ 2 a;^

Ex.5. Simplify —^

—

_^
Sx-l

_^
1

3 a: - 3 \ -x^ 2 X + 2

The expression = 'iAzil + "^

S{x-l) x^-l 2(:>:+l)

\0(x+ 1) -0(3x- l)+3(x- 1)

Q(x^ - 1)

10 .r + 10 - 18 a; + 6 + 3 x - 3 13 - 5 a:

1.

Simplify

1

6(a:2 - 1) G(x^ - 1)

EXAMPLES XIII. g.

1 1 g x-\-2a 2(a'^-4ffx) _ Sa
4j; — 4 5a -f 5 1 — a;"^ x-\-a or — x:^ x— U'

3 2 5« . x-a tt'+ Sax x+ a

1 + rt 1 — « rt'-^ — 1 x+ a a'^ — x'^ X — a
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5. _l_+-J_ +-i^ 10. —^-+ 1

2 .!•+ 1 2 x-1 1-4 x^ 6 « + <) - « 3 a- - 3

o
11.

jr
I

xh/-

1 _ :>;2 ^ _ 1 ^ + 1 :>;=5 - ^3 ^ _ a-6

^ 2-5.r. 3+ a; 2y,(2.-c-ll)
^g^

g-^ - y- xy - y^
_

:c+3 3— X ic-—

9

icy xy — x'^

g 3 -2a; 2a; + 3
^

12
^g^

x^ + if
^

x
^ y

' 2 1- + 3 3 — 2 X 4 ic- — 9 X- — y'^ x -{- y y — x

9 _5 3 11 j^ a-2 + 2 .V + 4 a;2 - 2 a; + 4

'26 + 2 46-4 Q-6b-^ ' x + 2 2-x

15. -^—+ .
^^^ + 1

a + 5 6 255"- — 4 «- 2 a — ob

16 - ^- ^^ ^^'(^ - ^) b -2a
X - b 62 _ ^2 6 + 0:

^^ ^a-- + 6 2(6x + fY.i-^) r/x^- 6

2 ./: - 1 1 - 4a:- 2x + 1*

jg
« + ^

,

b + c

19.

(rt - 6) {X - a) (b - «) (a; - 6)

CT — r b — c

(a-b){x-a) (6-a)(6-x)'

20
2« + y , ff + 6 + ?/ x+ y - a

{x — a){a — b) (x — b) (6 — a) {x — a) (x — b)

21.
'

+
' '

(«-2 _ ;/2) (^.2 + ^-2) ^5-2 _ ,,2>) ^j.2 + «2) (^.2 + «2) (;/2 + /,2)

1 , 4a 1 2a
X + rt a:'- — «'- a — .c x- + a^

3 1 +_J^+ 1

24.

a; + a a; + 3 « a — x x — S a

1 1,1
4 a'^(a + :>•) 4 rr^^.x - «) 2 «-(«- + a;-) «« -

a- |/^ _|_
a-^ + j/^

_^
xy

X- - y- X' + y- y^ - x^ {x + y) {x- + y-)

b a ff-^ + 6-^ a^

(((a-^ - b-^) b{a- + b-^) ab(b* - a^) b^ - a^
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150. From Art. 149 it follows that

:

(1) Changing the signs of an odd number of factors of

numerator or denominator changes the sign before the

fraction.

(2) Changing the signs of an even number of factors of

numerator or denominator does not change the sign before

the fraction.

Consider the expression

I + I + 1

(a - b)(a - c) {b - r){h - a) (e - a)(c - h)

By changing the sign of the second factor of each denomi-

nator, we obtain

(a - 6)(c - a) (h - c)(a - h) (c - a){b - c) ^
^

Now it is readily seen that the L. C. M. of the denomi-

nators is (rt — b)(b — c)(g — a), and the expression

_ —(b — c)— {g — a)— {a — b)

(a — ?>)(5 — c)(c — a)

— b-\-c — c-{-a — a + b

(a-b)(b-c)(c-a)
0.

151. There is a peculiarity in the arrangement of this

example which it is desirable to notice. In the expression

(1) the letters occur in what is known as

Cyclic Order ; that is, b follows a, a follows

c, c follows b. Thus, if a, b, c are arranged

round the circumference of a circle, as in

the annexed diagram, if we start from any

letter and move round in the direction of

the arrows, the other letters follow in cyclic

order, namely abc, bca, cab.

The observance of this principle is especially important

in a large class of examples in which the differences of

three letters are involved. Thus we are observing cyclic

order when we write b — r, c — a, a — b; whereas we are
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violating cyclic order by the use of arrangements sucli as

h — c, a — c, a~h, or a — c, b — a, b — c. It will always

be found that the work is rendered shorter and easier by

following cyclic order from the beginning, and adhering

to it throughout the question.

EXAMPLES XIII. h.

Find the value of

a
,

b
,

c

{a - h) {a -c) (b- c) (& - a) (c - a) (c - b)

^ +-, A. r +

3.

(a - b) (a - c) (b - c) {b -a) • (c - a) (c - b)

z
,

X
, y

{X - II) {X - z) ill
- z) (y -X) (z - x) {z - y)

(X - y){x - z) (y- z){y - x) {z - x)iz - y)

- b — c
,

c — a
,

a — b
0. —— -+--: 7-7-. r +

(a - b) (a - c) (& - c) (5 - «) (c - a) (c - b)

g
x^yz y'^zx

,

z-xy

{x-y)(x- z) (y - z) {y - x) {z - x) {z - y)

7
1 +

«

I

1 + ^>

I

1 + ^-

(a-6)(a-c) {b-c){b-a) (c-«)(c-6)

Q p-

a

,
q-

a

.
r-a

+
{p-q)(p-r) (q-r){q-p) {,r-p){:r-q)

g p-^ q-r q + r -p
^

r +p - q

(P - q) (P - r) (q - r) (q - p) (r - p) (r - q)

10, «'
'''

(rt^ - &-2) (a2 - (-2) (&2 _ c-2) (6-2 _ (fi) (c2 - a') (r2 - //2)

x + y ^
x+y

_^
X + y

(P - q) (P - r) (q - r) (q - p) {r - p) (r - q)

q^r r + P _^
P + q

(X - y) (X -z) iy- z) (y - x) {z - x) (z - y)



CHAPTER XIY.

Complex Fractions. Mixed Expressions.

152. We now propose to consider some miscellaneous

questions involving fractions of a more complicated kind

than those already discussed.

In the previous chapter, the numerator and denominator

have been regarded as- integers ; but cases frequently occur

in which the numerator or denominator of a fraction is itself

fractional.

153. A Complex Fraction is one that has a fraction in the

numerator, or in the denominator, or in both.

a a

Thus -, -, - are Complex Fractions.
X c

c d

In the last of these types, the outside quantities, a and d,

are sometimes referred to as the extremes, while the two

middle quantities, h and c, are called the means.

154. By definition (Art. 148) - is the quotient resulting

d

from the division of - by -
; and this by Art. 143 is -^•

h ^ d'
^

he

a

h ad

c
~ be

d

126
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155. From the preceding article we deduce an easy method
of writing down the simplified form of a complex fraction.

Midtiply the extremes for a neiv numerator, and the means

for a new denominator.

a + X

b _ab(a -^ x) _ a

a^ — X? ~ b{a^ — .r'-) a — x'

ah

by cancelling common factors in numerator and denominator.

156. The student should especially notice the following

cases, and should be able to write off the results readily.

1 _ . a _ ^^ _ ^^

a ' b a a'

T= a ~~^ = a X b = ab.
1 b

b

1

a_l^l_l b_b
1 a ' b a I a

157. We noAv proceed to show how complex fractions

can be reduced by the rules already given.

Ex.1.

Ex. 2.

a ,c
b d

a c

b d
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Ex. 3. Simplify

The numerator

Similarly, the denominator

Hence the fraction

«2 _yi ^2 _^ /^2

a. + h _ a — h

(I — h a -\- b

(^2 + ^2)2_ ((^2 _ ^^2) 2 _ 4 ^252

(«--^ + h^) («^ - ?>-^) («2 + 62) (^2 _ 52)

^ 4r<7>

4 a'-^?>2 4 «?)

(a2 + &--2) («2 - />2) (^, + j,^ ^a - b)

4:aVy^ {a + b){a-b) ab

(^2+ 62) («2_ 62) 4 ^6 «24. 62

Note. To ensure accuracy and neatness, when the numerator and
denominator are somewhat complicated, the beginner is advised to

simplify each separately as in the above example.

Ill the case of complex fractions like the following, called

Continued Fractions, we begin from the lowest fraction, and

simplify step by step.

„ . 9ic2-64

r 1



5.
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158. Sometimes it is convenient to express a single frac-

tion as a group of fractions.

10 xY ~ 10 xy^ ~ 10 x'Y ^ 10xY
^J^_l 3^
2y X 2x;^'

MIXED EXPRESSIONS.

159. We may often express a fraction in an equivalent

form, partly integral and partly fractional. It is then called

a Mixed Expression.

Ex. 1.
x+7 ^ (a;+2)4-5 ^ -^

x+2 x+2 x+2

Ex 2.
3 X - 2 ^ Pj(x + 5) - 15 - 2 ^ 3(a- + 5) - 17 ^ 3 17

"':*•.+ 5 ;/• + 5 a; + 5 x +
In some cases actual division may be advisable.

Ex. 3. Show that 2 x^ - 7 x - 1 ^ 2 .x - 1 —
x-3

Performing the indicated division, we obtain a quotient 2 x — 1, and

a remainder — 4.

Therefore
2x'--lx-l ^ 2 x - 1 ^^

160. If the numerator be of lower dimensions (Art. 29)

than the denominator, we may still perform the division,

and express the result in a form which is partly integral

and partly fractional.

Ex. Prove that
^^ = 2 x - 6 x^ + 18 x^ ^^

^'

l+3x-^ 1 + 3x2

By division 1 + 3 x2)2 x (2 x - 6 xH 18 x^

2 X + 6 x3

-6x3
- C x3 - 18 x^>

18x5

18 x5 + 54 x7

whence the result follows.
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Here the division may be carried on to any nuinber of terms in

the quotient, and we can stop at any term we please by taking for our

remainder the fraction whose numerator is the remainder last found,

and whose denominator is the divisor.

Thus, if we carried on the quotient to four terms, we should have

l + 3x-^ l+Sx^

The terms in the quotient may be fractional ; thus if x^

is divided by or — a^, the first four terms of the quotient are

1 + ^' + ^ + ^, and the remainder is ^'.

iV tAj tV tV *v

161. Miscellaneous examples in multiplication and divis-

ion occur which can be dealt with by the preceding rules

for the reduction of fractions.

Ex. Multiply x-\-2a —— by 2 x - a ^
^^

The product =lx+2a ^^^"j x (2 x - a - -^^\

__ 2 x^ + 7 ax + 6 «" - a^ 2 x? + ax - o?- - 2 g^

2x + 3rt X + a

_ 2 x'-^ + 7 ax + 5 a2 ^ 2 x^ + ax - 3 a^

2 X + 3 a X + a

_ (2 X 4- 5 g) (x + g) ,, (2x + 3a)(x- a)

2x + 3a x + «

= (2 X + 5 a) (x — a).

EXAMPLES XIV. b.

Express each of the following fractions as a group of simple frac-

tions in lowest terms

:

^ 3 x^y + xxp' - if- ^ g + ?> + c

Ox?/ ' abc

2 3 g^x — 4 a'^x^ + G ax^ g he + ca + ab

12 ax abc

b-hS ab- + b^ g a^bc - 3

2a6
'

6 abc
3 g3 - 3 g2?) + 3 g6- + 6=^

g gS^c - 3 abh- + 2 g6c
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Perform the following divisions, giving the remainder after four
terms in the quotient

:

7. x---(l+x). 9. (l + x)^(l-x). 11. x2--(x+3).

8. a^(a-b). 10. l~{l-x + x'^). 12. l-(l-x)2.

13. Show that J^—-^ ^^^2b '

^^^^

(a - 6)2 a-b

14. Show that x2 - xy +ij^ - -^^ = t^lzJ/l.

x+ y x-\-y

15. Show that
60^''-17x^-4x+l ^ 12 ^ _ 25 + 49

5x2 + 9x-2 a: + 2

16. Show that 1 + ^'+^'-^' = (a + 6 + c)(«+6-c).
2a& 2a6

17. Divide x + ^^/^ ~ ^^
by x - 1 '

^^
x2 - 16 X + 4

18. Multiply cfi - 2 ax + 4 x2 -^^^ by 3 - ^>-^(^^ + ^'^'^
.

« + 2 X «'" + 2 «x + 4 x2

19. Divide 52+ 3 6 - 2 - -i^ by 3 6 + C ^
^^

6-3 6-3

20. Divide a2 + 9;/2 4._656i_ |3y ^_^3^^ 1362

a2 - 9 62 "^ « - 3 6

21. Multiply 4 x2+ 14 x +
^^^"^"^

by ^ '^
'^ + ^^

2x-7 6 12x2+18x + 27

162. We add an exercise in which most of the processes

connected with fractions will be illustrated.

EXAMPLES XIV. c.

Simplify the following fractions :

y2 _ ^2

" 3 6(c2 - x2)
"^ Vbc + 6x ^

c2 - 2 ex + X2J

'

x(x+ ff)(x-|- 2ct) x(x + «)(2a;+ g)

3« 6a

3. V^ L_^ 2 4 f
•!!+]/ V^_/:lzi?/Y.

b\a-b a-\-2bJ a2 + a6-262 \x-y) \x + y J.2^2 4x
5. r +

X - I X+1 X2-X+1
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^11 2

X (X + 1)2 X + 1 1 + X + X2

g
l + x3 g 2x3-9x2 + 27

l + 2x + 2x2 + x3 3x3-81x+162

a (^2 - &2)a; ff(a2 - 62) ^^2

6 P "^ l>\h + ax)
'

11 f
^:'^ — «^

.
x2 + qx ) V ^^ — Q^^-^'"^

Z-^'
f^\

I x2 — 2 «x + a2 X — « / x^ + «^ V « y]

a2-x2 V a) \ a)
12

a2 + rtx + x2 «3 _ x^

x*-2x2+ 1 ,. gg + ff(l + ff)y + i/
13. ^^

^
14.

3 x5 - 10 x3 + 15 X - 8 a^ - y^

4

,, 1 2 3 «
15. - + —^^ +

a «+l «+2 111
«

2C + 3 1 1
16. „ ., ,^—r^ + oX

2x2 + 9x+ 9 ' 2 2x-3 ,. 9

4x

17.
X3 + X2 + X + 1 X3 - X2 + X - 1

18
1-^^ W 1

I

1 V
(1 + ax)2-(a + x)2 2V1-X 1 + x/

jg 2x3-x2-2x+ 1
. 20

^'^-6x +

21.

x3 - 3 X + 2 4 x3 - 21 x2 + 15x + 20

2 a X — a ,2
(x - 2 «)- 0:2-5 ax + 6 «2 x-Sa
l/«2 + x2\ 1 ^' -L '>• / n \2

x2-?/2 1

X2?/ + Xy2 X + ?/

2

/ «^ + x2 \ l^ «4-x / a \

\a'^-x^) 2 a-x \a + x/

23. ^f-i ^—
2\x-rj x + y

24. 1 jyt ^
I- Mx ^'-^

1
X + ?/ L2 Vx 4- 2/ X - 2/ / x^y -{- x?/2j

25. (3x-5-^)(3x + 5-|).(x-^).

26. /?-^_ + -J_Wf«+^-«JZ^Y
Ix rt + x a — xi \a — X a-{-xJ
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1

2ic— 1 4x^—1

1 + «/> " 1 - «6 I

+

(« — b)b a(a — 6)

1 + «6 1 — ab

b a)

30 _J^__y
1_1 x^+ij'i "*• 2x+l

a + b - a x-\- ij _ a + b a-h
Qo 1 4- 'if^ 1 — a;?/ .. a — b a -{- b ab^ — a%
04i. X • do. X •

^ _ a{b - a) -^ ?/(a; + y) a — b _ a + ?) a'^ + ft'-^

1 + «5 1—^2/ a-j- b a — b

35.

x(l^x){l-xy ^•24.1_1

1+i 1
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\y Xj\lJ^- X^J X^ + XIJ XIJ - if

(X + zy - y^ (X +[yy - ^2 '

(^y^ ^yi _ ^2

a;2-(y-2^)2 y2_(2^_x)2 4^-2-(x-y )-^

• (2 S + x)'-2 - ?/2
"^

(.X + y)2 _ 4 ^2 + (y + 2 ^)2 - x2'

(a^ -y)(y-^) + (y - ^) (^ - a;) + (g - a;) (x - ?/)

x(^ - x) + ?/(x - ?/) + ^(?/ - ^)

« — & — c h — c — a c — a — h

{a-b)(a-c) (b-c)(b-a) {c - a){c - h)

47.
<-- + ff ^ « + ?>

, & + c

45.

46.

(« - 6) (« - c) (& - c) (& - a) (c - «) (c - ?>)

x2-(2y-3^02 4?/2_(3g-x)2 9^'2-(x-2y)2
' (3 2; + x)2-4?/2'^ (x + 2?/)2-902+ (2 ?/ + 3 2:)2 - x2'

9y2_(4g_2x)2 16^2_(2x-3y)2 4 x2 - (3 y - 4 ^)2
• (2x + 3|/)2- 16 2;2+ (3^4-40)2-4x2 "^

(4^ + 2x)2 - 9 ^2'

50.

51.

52.

53.

1



CHAPTER XV.

Fractional and Literal Equations.

163. In this chapter we propose to give a miscellaneous

collection of equations. Some of these will serve as a

useful exercise for revision of the methods already explained

in previous chapters; but we also add others presenting

more difficulty, the solution of which will often be facili-

tated by some special artifice.

The following examples worked in full will sufficiently

illustrate the most useful methods.

Ex. 1. Solve 4 - ^^^ = ^ - 1.

8 22 2

Multiply by 88, which is the least common multiple of the denomi-

nators, and we get

352- ll(x-9)=4x-44;
removing brackets, 352 — llx + 99 = 4x — 44;

transposing, — llx — 4aj = — 44 — 352 — 99
;

collecting terms and changing signs, 15 a; = 495
;

.-. x = 33.

a* — 9
Note. In this equation is regarded as a single term with

8

the minus sign before it. In fact it is equivalent to — i (a: — 9) , the

line between the numerator and denominator having the same effect

as a bracket.

Ex.2. Solve
8x+23_5x+_2^2x+j_^^

20 3 a: + 4 5

Multiply by 20, and we have

8 X + 23 - ^^C^^-^^) = 8 a- + 12 - 20.
3a; -f- 4

By transposition, 31 = 20(5 a; 4- 2) ^

Sx + i

136
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Multiplying across, 93 .r + 124 = 20(5 r + 2),

84 = 7 X
;

.-. a: = 12.

Ex.3. Solve A:zA + ^zii = ^ZL^ + ^-7
10 x-Q x-1 x-Q

This equation might be solved by clearing of fractions, but the

work v^ould be very laborious. The solution will be much simpli-

fied by proceeding as follows :

Transposing, ^11^ _ ^.H^ = ^jzl _ ^lli.
" a;- 10 x-1 x-9 x-6

Simplifying each side separately^ we have

{x - 8) (x - 7) - (x - 5) (x - 10) ^ (X - 7) (x - 6) - (x - 4) (x - 9) .

(x-10)(x-7) (a:-9)(x-6)
'

. x2-15 x+56- (x2-15 x+50) ^ x^-lS x+42- (x^-lS x+36)
.

(x-10)(x-7) (x-9)(x-6) '

(x - 10) (X - 7) (X - 9) (X - 6)*

Hence, since the numerators are equal, the denominators must
be equal ; that is,

(x - 10) (x - 7) = (x - 9) (x - G)

,

x2 - 17 X + 70 = x2 - 15 X + 54,

16 = 2x;

.-. x = 8.

Ex. 4. Solve

We have

5x-64 _ 2x- 11 ^ 4X-55 _ x-6
X— 13 X — 6 X — 14 X — 7

5 + -i /2 + -i-W4+—1^ l\ +a:-13V x-6J x-14V

X— 13 X — 6 X — 14 X

Simplifying each side separately^ we have

(x-13)(x-6) (x-14)(x-7)

(x - 13) (X - 6) = (X - 14) (X - 7),

x2 - 19 X + 78 = x2 - 21 X + 98,

2 X = 20
;

.-. x = 10.
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164. To solve equations Avliose coefficients are decimals,

we may express the decimals as common fractions, and pro-

ceed as before ; but it is often found more simple to work
entirely in decimals.

Ex. 1. Solve .375 X- - 1.875 = .l'2x + 1.185.

Transposing, .375 x - .12x = 1.185 + 1.875
;

collecting terms, (.375 — .l'2)x = 3.06,

that is, .255 x = 3.06;

.•.:.=?:0«=12.
.255

Ex.2. Solve .ere + .25 - ia- = 1.8 - .75x- 1.

Expressing the decimals as common fractions, we have

2. X A- ^ i- V — 1^ ^0* !•3**'T^4 9-*' — -"-g i"*^ 3>

clearing of fractions, 24 a: + 9 — 4 x = 68 — 27 x — 12
;

transposing, 24 x - 4 x + 27 x = 68 - 12 - 9,

47 X = 47
;

.-. x=l.

EXAMPLES XV. a.

1.
4(x + 2) ^^ ^

5x ^ ,--S ^x-S
^

5 ^Q^
5 13 7 3 21

2 'L+A + 'LzlA = 2 ^
5(x + 5) 2(x-_3)_

14 6
'

8 7
~^^'

9 7 2 3 4^5 "^

4 1/ Ol

8. 3 +
4 2V 3) 6 3V 2]

5 4

10. x-f3x-f3x-2iLz_^\:=l(2a;-57)-^.
^ . 10 yl 6^ ^3

11 2x-5
^

x-3 ^ 4.r-3 ^ ^ ^3 4(x + 3) ^ 8x + 37 7x-29
5 2X-15 10

'"
' 9 18 5X-12*



13.

16.

31
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(2a;-l)(3x+8) _-, _^ ^g 30+ 6x
^

G0+ 8a; ^-^^ ^

48

5a: + 3 6x + 2 "
• ^_2 a:-l x-Q x-l

15. -i ^ =—^ ^i-. „ x+5 X
:c+3 ic+ 1 2x+6 2a;+ 2 21

7 60 _ lOi

17. ^-+-^^=-^+

x+ 4 »^—

7

a;— 7 X—

9

a:-9 a;-ll x-15 a;-17

X-
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Ex. 2. Solve -^ ^ = ^^^.
X — a X — b X — c

Simplifying the left side, we have

a(x — b) — b (x — a) _a — b

{x — a)(x — b) X — c

(a — b)x _ a — b ,

{x — d){x—b) X — c
*

• a; ^ 1 _

{x — a) (ic — 6) X — c

Multiplying across, x^ — ex = x^ — ax — bx -^ ab,

ax -\- bx — ex = ab,

{a + b — c)x = ab
;

:.x^. «^
a + b — e

EXAMPLES XV. b.

1. ax-2b = bbx-^a.
^^ l_i = l_l.

2. a^{x - a) + &2(x -b) = abx. 'a x~ x b

4. (x-a){x + b) = {x-a + bY. 'Aa J Aa ]

5. a(x-2)+2x = 6 + a. ^^ « = c(«-Z>) + ^.

6. m^(m — x) — imix = n^(n + x). x x

7. (a + x){b + x) = x(x — e). .. 9a Sx _4b 2x
8. {a-b){x-a) = (a—c)(x—b). b b a a

g
2x + Sa _ 2(Sx + 2a) ^g x - a ^ x-b
x + a Sx-\-a '

b - x~ a-x
10.

2(x- b) ^ 2x+ b
^g x-a ^ (x- by

' Sx-c 3(x-c) ' 2 2x-a'

n.lx(.-<o-(^y^ =
^f(«-f).

18. (rt + b)x^ - a(Jjx + a2) = bx{x -a) + ax{x - h).

19. b{a + x?)-{a-Vx)(h-x) = x'^^~-

20. b{a-x)-^{b^xY-\-ablr^ + \y=().

21. a;2+a(2rt-X)-— rr^X-^'V +«2.

22. (2a;-a)fx + ^^^\ = 4x(|-x^-l(a-4a;)(2a + 3a;).



CHAPTER XVI.

Problems leading to Fractional and Literal

Equations.

166. We here give some problems which lead to equations

with fractional and literal coefficients.

Ex. 1. Find two numbers which differ by 4, and such that one-half

of the greater exceeds one-sixth of the less by 8.

Let a; represent the smaller number, then x + 4 represents the greater.

One-half of the greater is represented by h{x + 4), and one-sixth of

the less by ^ x.

Hence i(x + 4)-ix = 8;

multiplying by 6, 3 x -f 12 — x = 48
;

2 X = 36
;

. •. X = 18, the less number,

and
'

X 4- 4 = 22, the greater.

Ex. 2. A has •$ 180, and B has $ 84 ; after B has won from A a

certain sum, A has then five-sixths of what B has ; how much did B
win ?

Suppose that B wins x dollars, A has then 180 — x dollars, and B
has 84 -f X dollars.

Hence 180 - x = f(84 -f x)

;

1080 -6x = 420 + 5x,

11 X = 660
;

.-. x = 60.

Therefore B wins 1 60.

EXAMPLES XVI.

1. Find a number such that the sum of its sixth and ninth parts

may be equal to 15.

2. What is the number whose eighth, sixth, and fourth parts

together make up 13 ?

3. There is a number whose fifth part is less than its fourth part

by 3 : find it.

141
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4. Find a number such that six-sevenths of it shall exceed four-

fifths of it by 2.

5. The fifth, fifteenth, and twenty-fifth parts of a number together

make up 23 : find the number.

6. Two consecutive numbers are such that one-fourth of the less

exceeds one-fifth of the greater by 1 : find the numbers.

7. Two numbers differ by 28, and one is eight-ninths of the other

:

find them.

8. There are two consecutive numbers such that one-fifth of the

greater exceeds one-seventh of the less by 3 : find them.

9. Find three consecutive numbers such that if they be divided

by 10, 17, and 26, respectively, the sum of the quotients will be 10.

10. A and B begin to play with equal sums, and when B has lost

five-elevenths of what he had to begin with, A has gained $ 6 more

than half of what B has left : what had they at first ?

11. From a certain number 3 is taken, and the remainder is divided

by 4 ; the quotient is then increased by 4 and divided by 5, and the

result is 2 : find the number.

12. In a cellar one-fifth of the wine is port and one-third claret

:

besides this it contains 15 dozen of sherry and 30 bottles^ of hock :

how much port and claret does it contain ?

13. Two-fifths of A's money is equal to B's, and seven-ninths of

B's is equal to C's, in all they have $ 770 : what have they each ?

14. A, B, and C have $1285 among them: A's share is greater

than five-sixths of B's by $ 25, and C's is four-fifteenths of B's : find

the share of each.

15. A man sold a horse for $35 and half as much as he gave for it,

and gained thereby $ 10 : what did he pay for the horse ?

16. The width of a room is two-thirds of its length. If the width

had been 3 feet more, and the length 3 feet less, the room would have

been square : find its dimensions.

17. What is the property of a person whose income is 8 430, when
he has two-thirds of it invested at 4 per cent, one-fourth at 3 per cent,

and the remainder at 2 per cent ?

18. I bought a certain number of apples at three for a cent, and
five-sixths of that number at four for a cent : by selling them at six-

teen for six cents I gain 3^ cents : how many apples did I buy ?

19. Find two numbers such that the one may be n times as great

as the other, and their sum equal to b.
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20. A man agreed to work a days on these conditions : for each

day he worked he was to receive c cents, and for each day he was idle

he was to forfeit d cents. At the end of a days he received m cents.

How many days was he idle ?

21. A sum of money is divided among three persons : the first

receives a dollars more than a third of the whole sum ; the second

receives h dollars more than a half of what remains ; and the third

receives c dollars, the amoimt which is left. Find the original sum.

22. Out of a certain sum a man paid .$96; he loaned half of the

remainder, and then spent one-fifth of what he had left. After these

deductions he still had one-tenth of the original sum. How much had
he at first ?

23. A man moves 12 miles in an hour and a half, rowing with the

tide, and requires 4 hours to return, rowing against a tide one-quarter

as strong : find the velocity of the stronger tide.

24. A man moves a miles in b hours, rowing with the tide, but

requires c hours to return, rowing against a tide d times as strong as

the first : find the velocity of the stronger tide.

25. A has a certain sum of money from which he gives to B 8 4

and one-sixth of what remains; he then gives to C $5 and one-fifth

of what remains, and finds that he has given away half of his money.
How many dollars had A, and how many dollars did B receive ?

26. The fore-wheel of a carriage is a feet, and the hind-wheel is h

feet in circumference. What is the distance passed over when the

fore-wheel has made c revolutions more than the hind-wheel ?

27. In a certain weight of gunpowder the nitre composed 10 pounds
more than two-thirds of the weight, the sulphur 4| pounds less than

one-sixth, and the charcoal 5i pounds less than one-fifth of the nitre.

What was the weight of the gunpowder ?

28. Two-thirds of A's money is equal to B's, and three-fourths of

B's is equal to C's ; together they have §650. What amount has

each ?

29. A dealer spends $1450 in buying horses at $100 each and
cows at § 30 each ; through disease he loses 10 per cent of the horses

and 20 per cent of the cows. By selling the remainder at the price

he gave for them he receives $ 1260 : find how many of each kind

he bought.

\ 30. A, B, C start from the same place at the rates of c, c + d,

c -\-2d miles an hour respectively : B starts k hours after A ; how
long after B must C start in order that they may overtake A at

the same instant, and how far will they then have walked ?
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MISCELLANEOUS EXAMPLES III.

1. Subtracters — 4p^ + 8 from unity, and Sp"^ — p — 1 from zero,

and add the results.

2. Simplify (x - yY + {x - zy + 2{{x - y){z - x)+ yz}.

3. Solve 6{x-2[x-S{x-l)]} = 70.

4. Divide xf^ ^- x^ -2ix^ - Sox + 57 by x'^+2x- 3.

5. Find the factors of

(i.) (a + &)2 - 121
;

(ii.) «* _ 54 . (iu.) ^^2 - 5 a: - 14.

6. Find the H. C. F. of a^ - 2 a'^ + 1 and 2a^ -\- a^ + ia - 7.

7. A man being asked his age said: "Ten years ago I was five

tiriies as old as my son, but 20 years hence, I shall be only twice as

old as he." How old was he ?

x-l x-2 3-.r
8. Solve (i.) 6-

(ii.)

3 4 '

4 X - 9 x - 3 5 X ~ 3 x-\- 6

27 4 6 2

9. By how much does y^ — Sy"^ -\- Sy -\- 9 exceed y— 4 y^-\-Q — y^ ?

10. Show that

(ax + byy + {ay - hxY + 02^2 + c2?/2 = (^2 + i/)(a'2. + 52 + c2).

11. Solve (i.)
2x-l_3x-_2^5£-4_7_x + 6

^ ^ 3 4 6 12 '

(ii.) (3x- l)2+(4x-2)2zr(5x-3)2.

12. If x = 1, y = 2, 5; = 3, find the value of

{X -y)\_(x + z)-V{y- z)']- x2 + ?/ (y + ^•) - zy.

13. Find the factors of (i.) a:^+\l ab-\-mi)^; (ii.) 10a2 + 79 a - 8.

14. Simplify (i.) —^^+ ^^
a2 — 4 2/2 Qjc + 2c?/

6 , a(ii.)—^ +
rtft + ft2 ^2 _ c^^ (^-2 _ 52

15. Find the L. C. M. of x^ + 6^2 + 11 x + 6 and x^ - 7 x + 6.

16. The difference between the numerator and the denominator of

a proper fraction is 8, and if each be increased by 17, the fraction

becomes equal to | : find it.

17. Solve (i.) 20(7x4- 4)- 18(3x+4)- 5 = 25(x + 6) ;

(ii.) J(x+l)+K^ + 3)=Ka^ + 4)+16.

18. Divide (i.) 2x(x2 - l)(x+ 2) by x2 + a: - 2
;

(ii.) 5x(x - 11) (x2 - X - 156) by x^ + x2 - 132 x.
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19. A boy is one-sixth the age of his father, and five years older

than his sister ; the united ages of all three being 51, how old is

each ?

20. Find the continued product of x^ + ax + a^, x'^ — ax -{ o?,

x^ - cfix" + a*.

21. Show without actual division that x — 3 is a factor of the ex-

pression r^ — 2 x2 — 5 X + 6.

22. Simplify (i.) ? + ? + ^ ^ ^
3 X - 6 3 (x - 6)

'

(ii.) ^ ^+1.
a — X 2a — X x

23. Find the H. C. ¥. oi 2a^ + a;^ - a -2 and a^ - a^ -'ia^ + 1a
by the usual method. Is the work shortened by proceeding as in

Art. 119 ? Show that the square of the H. C. F. is contained in the

second expression.

24. Divide x^ + 19 x^ - 216 by (x^ - 3 x + 9) (x - 2).

25. Simplify (i.) 2±1 _ .^ _ l^jzM: (ii.) _^ + 1

2 27 + 2 2i)2_8 ^ ^x2-4 (x-2)2

26. Find the factors of (i.) 14 a^-ll a-15
;

(ii.) a'^+ b a'^b'^+dbK

27. Of a party 5 more than one-third are Americans, 7 less than

one-half are Englishmen, and the remainder, 8 in number, are Ger-

mans : find the number in the party.

28. Solve (i.) 2(5 x- 2)- 3(5 x - 8)= 5(x + l)-(2x- 11);

^.._^ 2x^-9^_x-J^
^ ^ 27 18 4

'

29. Simplify (i.) ^
;

(ii) 1±^±.^^

30. Find three numbers whose sum is 21, and of which the greatest

exceeds the least by 4, and the middle one is half the sum of the

other two.

31. Employ the Factor Theorem in finding the H. C. F. of

«3 _ 2 a2 _,. 1 and 2 a3 + a2 ^ 4 ^ _ 7.

32. Show that
^(^^ + ^-^)-^(^^-^-^)--l^^JL^.
x2 - X - 2 x2 + X - 2 x2 - 4 x2 - 1

33. Two trains go from P to Q by different routes, one of which
is 15 miles longer than the other. A train on the shorter route takes

6 hours, and a train on the longer, travelling 10 miles less per hour,

takes 8^ hours. Find length of each route.
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34. Find the factors of

(i.) 4 x2 - 4 xy - 15 \f ;
(ii.) 9 x* - 82 x.V _^ 9 ^4.

35. Solve
17-3x_2+^^14 + 7x g^

5 3 3

36. The number of months in the age of a man on his birthday in

1875 was exactly half of the number denoting the year in which he

was born. In what year was he born ?

37. Simplify (i.)
^ ^ - ^ _ 2(r. +.2) _l_ I

^ •>' ^- ^ (X - 3)2 x2 - 9 ' ^ ^ 2 x2 _ i- (2 X + 1)2

38. Divide x^-]-x^y'^+ x^y^-\-Qc?y^-\-y^ by x^—x^y-{-x'^y'^— xy^-\-y^ and
find the value of the quotient when x = and y = \.

39. Simplify(Dj-,,^^-^^;
X^

. X 1 + X + X2

1+3x4-3 x2 + 2 x3

1 + X

40. A regiment has sufficient food for m days ; but if it were

reinforced by p men, would have food enough for n days only. Find

the number of men in the regiment.

X X — ~ X

41. Solve (i.) —-^ + -—^ + ^ = 0;
^ ^ d h c

(ii \ -^^ - (^
I

^- + ^-> _ « + 6baa
42. Simplify (1 + a)-

r"^i-a+ ^

^
[

I 1 + a + a2 J



CHAPTER XVII.

Simultaneous Equations.

167. Consider the equation 2 x -{- 5 y = 23, which contains

tiao unknown quantities.

From this we get y =———- (1).

Now for every vahie we give to x there will be one cor-

responding value of y. Thus we shall be able to find as

many pairs of values as we please which satisfy the given

equation. Such an equation is called indeterminate.

For instance, if x = 1, then from (1) y = -2J-.

Again, if x == — 2, then ?/= 2_l • and so on.

But if also Ave have a second equation of the same kind

expressing a different relation between x and y, such as

we have from this ?/ = t^-^I

—

- (2).

If now we seek values of x and y which satisfy both

equations, the values of ?/ in (1) and (2) must be identical.

Therefore
23-2.^24-3..

5 4

Multiplying across, 92 - 8 . = 120 - 15 .

;

7. = 28;

.-. a7 = 4.

Substituting this value in equation (1), we have

23-2. 23-8 o
y = =—p— = 3.

5 5

Thus, if both equations are to be satisfied by the same
values of . and y, there is only one solution possible,

147
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168. Defixition. When two or more equations are

satisfied by the same vahies of the unknown quantities, they

are called simultaneous equations.

169. In the example already worked, we have used the

method of solution which best illustrates the meaning of

the term simultaneous equations; but in practice it will be

found that this is rarely the readiest mode of solution.

It must be borne in mind that since the two equations are

simultaneously true, any equation formed by combining

them will be satisfied by the values of x and y which sat-

isfy the original equations. Our object will always be to

obtain an equation which involves one only of the unknown
quantities.

170. The process by which we cause either of the un-

kno^vn quantities to disappear is called elimination. It

may be effected in different ways, but three methods are

in general use : (1) by Addition or Subtraction ; (2) by Sub-

stitution ; and (3) by Comparison.

ELIMINATION BY ADDITION OR SUBTRACTION.

171. Ex.1. Solve 7x + 2y=i7 (1),

5x-4?/ = l (2).

Here it will be more convenient to eliminate y.

Multiplying (1) by 2, Ux -\-4ty = 9i,

and from (2) 6x — iy = 1;

adding, 19 x = 95
;

.*. x = 5.

To find y, substitute this value of x in either of the given equations.

Thus from (1) 35 + 2 ?/ = 47
;

.-. ?/ = 6,|
and X = 5. i

In this solution we eliminated y by addition.

Ex.2. Solve 3x-\-7y = 21 (1),

5a; + 2y = 10 (2).
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To eliminate x we multiply (1) by 5 and (2) by 3, so as to make
the coeliicients of x in both equations equal. This gives

lbx-\-Zby = 135,

15 a: + 6 1/ = 48;

subtracting, 29 y = 87

;

.-. y = 3.

To find X, substitute this value of y in either of the given equations.

Thus from (1) 3 x + 21 = 27
;

.•.. = 2,,

and 2/ = 3. )

In this solution we eliminated x by subtraction.

Rule. Multiply, ivhen necessary, in such a manner as to

make the coefficients of the miknown quantity to he eliminated

equal in both equations. Add the resulting equations if these

coefficients are unlike in sign; subtract if like in sign.

ELIMINATION BY SL^STITUTION.

172. Ex. Solve 2x-5y=l (1),

7x + 3?/ = 24 (2).

Transposing —by in (1), and dividing by 2, we obtain

x = ^JL±l.
2

Substituting this value of x in (2) gives

Whence 35 ?/ + 7 + 6 y = 48,

and 41 ?/ = 41
;

.-.y = l.

This value substituted in either (1) or (2) gives

x = 3.

Rule. From one of the equations, find the value of the

vnknoicn quantity to be eliminated in terms of the other and
known quantities; then substitute this value for that quantity

in the other equation, and reduce.
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ELIMINATION BY COMPARISON.

173. Ex. Solve x+15y = 53 (1),

2/+3x = 27 (2).

From (1) a; = 53 - 15?/,

and from (2) x = ^^ ~ ^
.

^
^

3

Placing these values of x equal to each other, we have

53-15^ = 2^-1/.
^

3

Whence 159 - 45 ?/ = 27 - ?/,

and 44 ?/ = 132
;

.-. y = 3.

Substituting this value in either (1) or (2) gives

X = 8.

Rule. Froyn each equation find the value of the unknown
quantity to he eliminated in terms of the other andknoivn quan-

tities; then form an equation ivith these values, and reduce.

EXAMPLES XVII. a.

Solve the equations :

1. 3 a: + 4?/ =10, 8. 15 a: +7?/ =20, 15. 39x-8?/ = 99,

4x + ?/ = 9. 9x+15?/ = 39. 52x-15?/ = 80.

2. x + 2?/ = 13, 9. 14a; -3?/ = 39, 16. bx=ly-2l,
3x + ?/ = 14. 6ic + 17y = 35. 21x-9?/ = 75.

3. 4x + 7?/ = 29, 10. 28 a: - 23 ?/ = 33, 17. 6?/-5x=18,
x + 32/ = ll. 63 X- 25?/ = 101. 12x-9?/ = 0.

4. 2x-?/ = 9, 11. 35x+17?/ = 86, 18. 8x = 5y,

3 X - 7 ?/ = 19. 56 X - 13 ?/ = 17. 13 x = 8 ?/ + 1.

5. 5x + 6?/=17, 12. 15x + 77?/ = 92, 19. 3x=7?/,

6x + 5?/ = 16. 55x-33?/ = 22. 12?/ = 5x-l.

6. 2x + ?/=10, 13. 5x-7?/ = 0, 20. 19x+17?/ = 0,

7x + 8?/ = 53. 7x + 5?/ = 74. 2x-?/ = 53.

7. 8x-?/ = 34, 14. 21x-50?/ = 60, 21. 93x + 15?/ = 123,

x + 8?/ = 53. 28x-27?/ = 199. 15x + 93?/ = 201.
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174. We add a few cases in which, before proceeding to

solve, it will be necessary to simplify tlie equations.

Ex.1. Solve 5(x + 2?j)-{Sx + nij)=U (1),

7x-dy-S(x-4:i/) = SS (2).

From (1) 6x-hl07j-Sx-Utj = U;
.-. 2x-7j = 14 (3).

From (2) 7 x -9y - 3x + 12y = S8
;

.'. 4:X + 3y = SS (4).

From (3) 6x-3^ = 42;

and hence we may find x = S, and y =2.

Ex. 2. Solve 3 X - ^^Lizl = ^ « - ^
^^^^

3l_ti_ 1(2.^-5)=?/ (2).

Clear of fractions. Thus

from (1) 42ic-2y + 10 = 28a:-2i;

.-. \4x-2y =-^\ (3).

From (2) 9?/ + 12 - lOx + 25 = 15?/

;

.-. 10x + 6y = 37 (4).

Eliminating y from (3) and (4), we find that

^ _ _ 14X — — Y3

.

Eliminating x from (3) and (4) , we find that

Note. Sometimes, as in the present instance, the value of the

second unknown is more easily found by elimination than by substi-

tuting the value of the unknown already found.

EXAMPLES XVII. b.

1. ^+2/-16, 3. ^-y=3, 5.^ + ^=10,

'x +
l
= u. ^-f = 8.

l
+ y = m.

2 ^ + 1^ = 5
4. a: - ?/ = 5, 6. a-. = 3 ?/,

'

^ 2 ' ^-y = 2. ^+y = U.
x-y = 4.

' 45 3-^
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7- lx-^y = 3, ^Q ^^y = U, 12. ^-^ =
4x-y = 20. 7 5^ 54

8. lx--ly = 4, x + ^ = 4f.
3x + y = n.

}x + j'^y = S. • 3
^^ 3a;-l y^7

9. 2a; + ?/ = 0, 11. 3ic-7?/=zO, ' 2 4 2

i?/-3x = 8. fa; + f?/ = 7. x + 3?/=9,

14. ^^ + ?^==3x-7y-37 = 0. 15. ^±i ^ ^y - 5 ^g^-^,
3 4^ 10 2 8

SIMULTANEOUS EQUATIONS INVOLVING THREE
UNKNOWN QUANTITIES.

175. In order to solve simultaneous equations wliicli con-

tain two unknown quantities we have seen that we must have
two equations. Similarly, we find that in order to solve

simultaneous equations which contain three unknown quan-

tities we must have three equations.

Rule. Eliminate one of the unhnoKjns from any pair of the

equations, and then eliminate the same unknoivn from another

pair. Two equations i7ivolving two unknowns are thus obtained,

ivhich may he solved by the rides already given. The reynain-

ing unknoivn is then found by substituti7ig in any one of the

given equations.

Ex.1. Solve 6x + 2y-6z = lS (1),

Sx-\-Sy -2z = lS (2),

7x + 5y-Sz=26 (3).

Choose y as the unknown to be eliminated.

Multiply (1) by 3 and (2) by 2,

18 cc + 6 ?/ - 15 ^ = 39,

6x + 6y - 4^= 26;

subtracting, 12 a; — 11^ = 13 '(4).

Again, multiply (1) by 5 and (3) by 2,

30x+ I0y-25z = 65,

Ux+lOy - Qz = b2',

subtracting, 16x-19;s = 13 (5).
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Multiply (4) by 4 and (5) by 3,

48 X - 44 ^ = 52,

48 cc - 57 ^ = 39
;

subtracting, 13 s = 13
;

and from (4) x = 2,V

from (1) 2/ = 3.]

Note. After a little practice the student will find that the solution

may often be considerably shortened by a suitable combination of the

proposed equations. Thus, in the present instance, by adding (1) and

(2) and subtracting (3) we obtain 2x — 4:Z = 0, or x = 2z. Substi-

tuting in (1) and (2), we have two easy equations in y and z.

Ex.2. Solve ^_i=L/+i=£ + 2,
2 6 7

^ + ^ = 13.
3 2

From the equation - — 1=^ + 1,

we have Sx—y = 12 (1).

Also, from the equation ^ — 1=^ + 2,

we have 7x-2z = 42 (2).

And, from the equation | + ^ = 13,
o 2

we have 2y4-3z = 78 (3).

Eliminating z from (2) and (3), we have

21x4-4?/ = 282;

and from (1) 12 x - 4 ?/ = 48
;

whence x = 10, y = 18. Also by substitution in (2) we obtains = 14.

Ex. 3. Consider the equations

6x-Sy- z = 6 (1),

13x-72/ + 3s = 14 (2),

7x-4:y = 8 (3).

Multiplying (1) by 3 and adding to (2), we have

28 X- 16?/ = 32,

or 7 X — 4 ?/ = 8.
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Thus the combination of equations (1) and (2) leads us to an

equation which is identical with (3) , and so to find x and y we have

but a single equation 7 x — 4 ?/ = 8, the solution of which is indeter-

minate. [Art. 167.]

In this and similar cases the anomaly arises from the fact that the

equations are not independent; in other words, one equation is de-

ducible from the others, and therefore contains no relation between

the unknown quantities which is not already implied in the other

equations.

EXAMPLES XVII. c.

3.

7.

x+ 2?/ + 20 = 11,
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because a = -, and ^ = - ; and consequently a is related to b
h a

exactly as h is related to a.

The reciprocals of x and y are - and - respectively, and
^ y 1 i

in solving the following equations we consider _ and - as
X y

the unknown quantities.

Ex.1. Solve ^-^ = 1 (1),
X y

1^ + ^ = 7 (2).
X y

Multiply (1) by 2 and (2) by 3 ; thus

X y

§2 + 18 = 21,
X y

adding, — = 23

;

X

multiplying across, 46 = 23 a;,

.-. x=2;

and by substituting in (1), y = 3.

Ex.2. Solve ~ + ~ -=- n),
2x Ay Sz 4:

^ ^'

l=ry ^'''

i-F, + ! = ^A (•^)^

clearing of fractional coefficients, we obtain

from(l) 6_^5_4^3
X y z

^

from (2) §-1 = (5),
X y

from (3) l^_§ + ^=,32. ......... (Q).
X y z
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Multiply (4) by 15 and add the result to (6) ; we have

dividiiig by 7,

from (5)

adding,

from (5)

from (4)

105 , 42 —
X y

15 6 = 11

X y

§5=11;
X

.: 2=3,^

|/=1

(7)

EXAMPLES XVII. d.

2-5 = 3,
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LITERAL SDrTLTAXEOUS EQUATIONS.

177. Ex. 1. Solve aj:-ryy = c (1),

a'x^h'y = d (2).

Tlie notation here first nsed is one that the student will freqtiently

meet with in the course of his reading. In the first equation we

choose certain letters as the coeflBcients of x and y. and we choose

corresponding letters irith accents to denote corresponding quantities

in the second equation. There is no necessary connection between the

values of a and a', read " a and a prime,'" and they are as different as

a and b ; but it is often convenient to use the same letter thtis slightly

varied to mark some common meaning of such letters, and thereby

assist the memory. Thus a and a' have a common property as being

coefficients of z : b, b' as being coefficients of »v.

Sometimes instead of accents letters are used with a suj^Xj such as

oi, «-2? (f3 ', ?>i> ^^2, t'z, etc., read •• a sub one, a sub two." etc.

To return to the equation ax -\-by = c 1 .

a'x-hb'y = c' ,2;.

Multiply (1) by b' and (2) by b. Thus

ab'z -\-bb'y = b'c^

a'bz -f- bb'y = be' ;

by subtraction, Qab' — a'b)x = b'c — be' ;

b'c - be'

a'h
C3).

As previously explained in Art. 171, we might obtain y
by substituting this value of j: in either of the equations (1)

or i^D ; but y is more conveniently found by eliminating x,

as follows

:

Multiplying (1) by a' and (2) by a, we have

aa'x + al>y = a'c,

aa'x -\-ab'y = ac';

by subtraction, (a'h — ab") y = a'c — ac'

;

_ a'c — ac'
'''

'^'a'b-ab^
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or, changing signs in .the terms of the numerator and denom-

inator so as to have the same denominator as in (3),

ac' — a'c -, b'c — be'
y = , and x = —•
^ ab'-a'b' ab'-a'b

Ex.2. Solve ^^zJl +y^ = i (1),
c — a c — b

y — a _ a
(2).

c a—h c

From (1) by clearing of fractions, we have

x{c -b)- a(c-5)+ vie- a)- b(c- a) = (c - a){c - 6),

x{c — &) + y(c — a) — ac — ah -^bc — ah + c^ — ac — bc-{- ab,

x(c-b)-hy(c-a) = c^-ab (3).

Again, from (2), we have

x{a -h)-\- a(a -b)+ cy - ca = a(a - b),

x{a — b) -\- cy = ac (4).

Multiply (3) by c and (4) by c — a and subtract,

x{c{c — b) — (c — a)(a — b)]= c^ — abc — ac{c — a),

ic(c2 - ac + a^ _ ab) = c(c^ - ab -ac-\- a"^);

.'. x = c
;

and therefore from (4) y = b.

EXAMPLES XVII. e.

I. ax -\- by = I, - ^
I y_J_ 10. qx-rb=p{a-y),±^1 —

bx -\- ay = m. ' a b ab

Ix + my = n, ^_]L— 1

px -{ qy = r. a' b' a'b'

f--(^+!)'

3. ax = by,

bx -{- ay = c.

11. ^+y-=i,
m m'

a b X y

4. ax + by = a\
bx + ay = ^ab. 'ni' m ^'

hx + ay = b^.

12. px -\- qy = 0,
5. x + ay = a', q 3x,2y_o

ax + a'y = l.
^' T "^ T " '^^ lx + my = n.

Q.px-qy = r, ^_^ = s
^^' («-^0^=C«+ ^')^>

rx — py = q- a b x -^ y = c.





CHAPTER XVIII.

Pkoblems leading to Simultaneous Equations.

178. In the Examples discussed in the last chapter we
have seen that it is essential to have as many equations as

there are unknown quantities to determine. Consequently

in the solution of problems which give rise to simultaneous

equations, it will always be necessary that the statement

of the question should contain as many independent con-

ditions as there are quantities to be determined.

Ex. 1. Find two numbers whose difference is 11, and one-fifth of

whose sum is 9.

Let X represent the greater number, y the less.

Tlien x-y=i\\ (1).

Also, ^+-^ = 9,
5

or x + ^ = 45 (2).

By addition, 2 x = 56 ; and by subtraction, 2 ?/ = 34.

The numbers are therefore 28 and 17.

Ex. 2. If 15 lbs. of tea and 10 lbs. of coffee together cost $ 15.50,

and 25 lbs. of tea and 13 lbs. of coffee together cost )$ 24.55, find the

price of each per pound.

Suppose a pound of tea to cost x cents and a pound of coffee to

cost y cents.

Then from the question, we have

15 x + 10?/ = 1550 (1),

25 .^ + 13 ?/ = 2455 (2).

Multiplying (1) by 5 and (2) by 3, we have

75 X + 50 ?/ = 7750,

75 X + 39 ?/ = 7365.

Subtracting, 11 ?/ = 385,

y = 35.

160
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And from (1) 15 x + 350 = 1550.

Whence 15 x = 1200
;

.-. x = 80.

Therefore the cost of a pound of tea is 80 cents, and the cost of a

pound of coffee is 35 cents.

Ex. 3. A person spent $0.80 in buying oranges at the rate of 3 for

10 cents, and apples at 15 cents a dozen ; if he had bought five times

as many oranges and a quarter of the number of apples, he would

have spent $ 25.45. How many of each did he buy ?

Let X represent the number of oranges and y the number of apples.

10 X
X oranges cost cents,

""

3

15 V
y apples cost —^ cents

;

3 12 ^ ^

Again, 5 x oranges cost 5 x x — , or —- cents, and ^ apples cost

Tr ^^ 3' 3 ^

L^x^, or 1^ cents;
4 12' 48

.-.^ + 1^^=2545 (2).
3 48 ^ ^

Multiply (1) by 5 and subtract (2) from the result

;

285 y or.
or ^ = 855

;

48

.-. y = 144;

and from (1) x — 150.

Thus there were 150 oranges and 144 apples.

Ex. 4. If the numerator of a fraction is increased by 2 and the

denominator by 1, it equals f ; and if the numerator and denominator

are each diminished by 1, it equals h : find the fraction.

Let X represent the numerator of the fraction, y the denominator

;

X
then the fraction is -•

y

From the first supposition, ^-tl = ^ (1)
2/ + 1 8

from the second, = - (2)

These equations give cc = 8,

Thus the fraction is y%.

M

y
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Ex. 5. The middle difjjit of a number between 100 and 1000 is

zero, and the sum of the other digits is 11. If the digits be reversed,

the number so formed exceeds the original number by 495. Find it.

Let X rej)resent the digit in the units' place
;

y represent the digit in the hundreds' place
;

then, since the digit in the tens' place is 0, the number will be repre-

sented by 100 1/ + X. [Art. 84, Ex. 4.]

And if the digits are reversed, the number so formed will be repre-

sented by 100 X + y.

.-. 100 X + 2/
- (100 y + v) = 495,

or 100x + y- 100?/-x = 495;

.-. 99x- 99^ = 495,

that is, x — y = h (1).

Again, since the sum of the digits is 11, and the middle one is 0,

we have x -\- y = \\ (2).

From (1) and (2) we findx = 8, ?/ = 3.

Hence the number is 308.

EXAMPLES XVIII.

1. Find two numbers whose sum is 34, and whose difference is

10.

2. The sum of two numbers is 73, and their difference is 37 : find

the numbers.

3. One-third of the sum of two numbers is 14, and one-half of

their difference is 4 : find the numbers.

4. One-nineteenth of the sum of two numbers is 4, and their

difference is 30 : find the numbers.

5. Half the sum of two numbers is 20, and three times their dif-

ference is 18 : find the numbers.

6. Six pounds of tea and eleven pounds of sugar cost $ 5.65, and
eleven pounds of tea and six pounds of sugar cost $ 9.05. Find the

cost of tea and sugar per pound.

7. Six horses and seven cows can be bought for $250, and thir-

teen cows and eleven horses can be bought for $461. What is the

value of each animal ?

8. A, B, C, D have $ 290 between them ; A has twice as much as

C, and B has three times as much as D ; also C and D together have

$ 50 less than A. Find how much each has.

9. A, B, C, D have $270 between them; A has three times as

much as C, and B five times as much as D ; also A and B together

have $ 50 less than eight times what C has. Find how much each

has.
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10. Four times B's age exceeds A's age by twenty years, and one-

third of A's age is less than B's age by two years : find their ages.

11. One-eleventh of A's age is greater by two years than one-

seventh of B's, and twice B's age is equal to what A's age was thir-

teen years ago : find their ages.

12. In eight hours A walks twelve miles more than B does in seven

hours ; and in thirteen hours B walks seven miles mqve than A does

in nine hours. How many miles does each walk per hour ?

13. In eleven hours C walks 12.i miles less than D does in twelve

hours ; and in five hours D walks 3;^ miles less than C does in seven

hours. How many miles does each walk per hour ?

14. Find a fraction such that if 1 be added to its denominator it

reduces to |, and reduces to | on adding 2 to its numerator.

15. Find a fraction which becomes | on subtracting 1 from the

numerator and adding 2 to the denominator, and reduces to i on

subtracting 7 from the numerator and 2 from the denominator.

16. If 1 be added to the numerator of a fraction it reduces to i
;

if 1 be taken from the denominator it reduces to |. Required the

fraction.

17. If f be added to the numerator of a certain fraction the frac-

tion will be increased by Jy, and if J- be taken from its denominator

the fraction becomes | : find it.

18. The sum of a number of two digits and of the number formed

by reversing the digits is 1 10, and the difference of the digits is 6 :

find the numbers.

19. The sum of the digits of a number is 13, and the difference

between the number and that formed by reversing the digits is 27

:

find the numbers.

20. A certain number of two digits is three times the sum of its

digits, and if 45 be added to it the digits will be reversed : find the

number.

21. A certain number between 10 and 100 is eight times the sum
of its digits, and if 45 be subtracted from it the digits will be reversed :

find the number.

22. A man has a number of silver dollars and dimes, and he ob-

serves that if the dollars were turned into dimes and the dimes into

dollars he would gain f 2.70 ; but if the dollars were turned into half-

dollars and the dimes into quarters he would lose $ 1.30. How many
of each had he ?

23. In a bag containing black and white balls, half the number of

white is equal to a third of the number of black ; and twice the whole

number of balls exceeds three times the number of black balls by four.

How many balls did the bag contain?
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24. A number consists of three digits, the right hand one being

zero. If the left hand and middle digits be interchanged, the number
is diminished by ISO ; if the left hand digit be halved and the middle

and right hand digits be interchanged, the number is diminished by
4o4 : find the number.

25. The wages of 10 men and S boys amount to S 22.30 ; if 4 men
together receive $ 3.40 more than 6 boys, what are the wages of each

man and boy ?

26. A grocer wishes to mix sugar at 8 cents a pound with another

sort at 5 cents a pound to make 60 pounds to be sold at 6 cents a

pound. What quantity of each must he take ?

27. A traveller walks a cenain distance ; had he gone half a mile

an hour faster, he would have walked it in. four-fifths of the time

;

had he gone half a mile an hour slower, he would have been 2^ hours

longer on the road : find the distance.

28. A man walks 3o miles panly at the rate of 4 miles an hour,

and partly at 5 ; if he had walked at 5 miles an hour when he walked

at 4, and rice versa, he would have covered 2 miles more in the same
time : find the time he was walking.

29. Two persons. 27 miles apart, setting out at the same time are

together in 9 hours if they walk in the same direction, but in 3 hours

if they walk in opposite directions : find their rates of walking.

30. When a certain number of two digits is doubled, and increased

by 10. the result is the same as if the number had been reversed, and
doubled, and then diminished by 8; also the number itself exceeds 3

times the sum of its digits by 18 : find the number.

31. If I lend a sum of money at 6 per cent, the interest for a cer-

tain time exceeds the loan by $ 1«» ; but if I lend it at 3 per cent, for

a fourth of the time, the loan exceeds its interest by •$425. How
much do I lend ?

32. A takes 3 hours longer than B to walk 30 nules ; but if he

doubles his pace he takes 2 hours less time than B : find their rates

of walking.



CHAPTER XIX

IXDETEKMTS'ATE AXD IMPOSSIBLE PbOBLEMS. XeGA-

TIVE ReSITLTS. MEA^-I^"G OF -. — . -. —
X (» X

IXDETER^nXATE A>T) BIPOSSIBLE PEOBLEMS.

179. By reference to Art. 167, it will be seen that a

single equation involving two unknown quantities is satis-

fied by an indefinitely great number of sets of values of the

unknowns involved, and that it is essential to have as many
equations expressing different, or independent conditions,

as there are unknown quantities to be determined. If the

conditions of a problem furnish a less number of independent

equations than quantities to be determined, the problem is

said to be indeterminate. If, however, the conditions give

us a greater numl;>er of independent equations than there

are unknown quantities involved, the problem is impossible.

Suppose the problem furnishes

2x-\-y= 5,

x+i/= 3.

From (1) and (2) we obtain x = o and y = — o. From
(2) and (3) we obtain x = 2 and y = 1. These values can-

not all be true at the same time, hence the problem is

impossible.

XEGATTTE EESrXTS.

180. A >> 40 years old. and B*s age f^ three-fifths of A"s.

When iciU A be five times as old as B ?

165
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Let X represent the number of years that loill elapse.

Then 40 + a; = 5 (24 + a;);

.-. 40 + cc = 120 + 5ic,

or x = - 20.

According to this analysis, A will be five times as old as

B in — 20 years. The meaning of this result ought to be

at once evident to a thoughtful student. Were the result

any positive number of years, we would simply count that

number forward from the present time (represented by the

word '' is " in the problem)
;
manifestly then the — 20 years

refers to i)ast time. Hence the problem should read, " A is

40 years old, and B's age is three-fifths of A's. When ivas

A five times as old as B ?
"

Suppose the problem read

A is 40 years old, and B's age is three-fifths of A's : find

the time at which A's age is five times that of B.

Let us assume that x years will elapse.

Then 40 + a; = 5(24 -fa;);

.-. x = -20.

Interpreting this result, we see that we should have

assumed that x years had elapsed.

The student will notice that the word " will " in the first

statement suggested that we should assume x as the number
of years that ivould elapse, and that the negative result

showed a fault in the enunciation of the problem
; but that

the problem, as given in the next discussion, permitted us to

make one of two possible suppositions as to the nature of

the unknown quantity, so that the negative result indicates

simply a wrong choice.

Hence in the solution of problems involving equations of

the first degree, negative residts indicate

(1) A fault in the enunciation of the problem, or

(2) A ivrong choice heticeen tico possible suppositions, as to

the nature of the unlcnoimi quantity, allowed by the problem.

Generally it will be easy for the student to make such

changes as will give an analogous possible problem.
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EXAMPLES XIX.

Make such necessary changes in the statements of the following

problems as will render them possible arithmetically.

1. A is 27 years old and B 15 ; in how many years will A be twice

as old as B ?

2. What are the two numbers whose difference is 50, and sum 40 ?

3. If to the sum of twice a certain number and ^ of the same num-
ber 10 be added, the result is equal to twice the number.

4. A man loses $ 400, and then finds that 6 times what he had at

first is equal to 5 times what he has left.

5. What fraction is that which becomes | when 1 is subtracted

from its numerator, and h when 1 is subtracted from its denominator?

6. A is to-day 25 years old, and B's age is f of A's : find the date

when A's age is twice that of B.

MEANING OF ^, ^, ^, ^^
O' CO' °o

181. Meaning of -• Consider the fraction - in whicli
X

the numerator a has a certain fixed value, and the denomi-

nator X is a quantity subject to change; then it is clear that

the smaller x becomes, the larger does the value of the

fraction - become. For instance,

iL^iOa, -^ = 1000 a, —-— = 100000 a.
1 ' 1 ^ i_
To T¥"00' 10

By making the denominator x sufficiently small, the value

of the fraction - can be made as large as we i^lease ; that
x

is, as the denominator x approaches to the value 0, the fraction

becomes infinitely great. The symbol go is used to express

a quantity infinitely great, or more shortly infinity. The

full verbal statement, given above, is sometimes written

a- = 00.

182. Meaning of —
• If, in the fraction -, the denomina-

tor X gradually increases and finally becomes infinitely large,
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the fraction - becomes infinitely small ; that is, as the de-

nominator of a fraction approaches to the value infinity, the

fraction itself approaches to the value 0. This full verbal

statement is sometimes written

« = 0.
00

183. Meaning of -• The symbol - may be indeterminate

in form or in fact. Thus the value of when x = 2

is -, but by putting the fraction in the form V^' + ''^^^~ ''^

we see that the expression is equivalent to x + 2, which
rf^ (-^3

becomes 4 when x = 2. Again, = - when x = a, but
X — a

by putting the fraction in the form ^^^^

—

^^ ——

^

X tt

we see that the expression is equivalent to x^ + xa + a-,

or 3 a~, when x = a. These fractions assumed the form -

under particular conditions, but it is evident that they

do not necessarily have the same value.

On the other hand, the symbol - may show that a value

is really indeterminate. Thus, solving in the regular way
the equations

x-\-y + 2 = 0,

we cret x = ^^— = -, and we can easily see that x can^ 2-2 0'
^

have any value whatever if we give y a value to suit, so

that the value of a; is indeterminate.

184. Meaning of -• Inasmuch as — = 0, what is true of
00 OC

- is equally so of —



CHAPTER XX.

Involution.

185. Definition. Involution is the general name for

repeating an expression as a factor, so as to find its second,

third, fourth, or any other power.

Invohition may always be effected by actual multipli-

cation. Here, however, we shall give some rules for writing

at once

(1) any power of a monomial

;

(2) the square and cube of any binomial

;

(3) the square and cube of any multinomial

;

(4) any power of a binomial expressed by a positive

integer.

186. It is evident from the Rule of Signs that

(1) no even power of any quantity can be negative;

(2) any odd power of a quantity will have the same sign

as the quantity itself.

Note. It is especially worthy of notice that the square of every

expression, whether positive or negative, is positive.

INVOLUTION OF MONOMIALS.

187. From definition we have, by the rules of multi-

plication,

(a^y = (]C^.cC-.a^= a2+2+2 = a\

(- xy = (- y?) (- y?) = a;3+3 = x\

(- ay = (- a') (- a^)(- a') = - a'+'+' = - a'\

(-3a'y=(- 3y(aY = 81 a''.

169
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Hence we obtain the following rule for raising a simple

expression to any proposed power

:

Rule. (1) liaise the coefficient to the required poioer by

Arithmetic, and j)rejix the 2yroper sign found by Art. 42.

(2) Multiply the index of every factor of the expression by

the exponent of the power required.

Examples. (1) (- 2 x^)^ = _ 32 a;^

(2) (-3a63)6 = 729aG?;i8.

16 a4&i-2

^^) (S)^ 81 xhj^

It will be seen that in the last case the numerator and the denomi-

nator are operated upon separately.

EXAMPLES XX. a.

Write the square of each of the following expressions :

1. 3a63. 5. ^xyz^.
g _^. lo §-^.

2. 5xV- 6. -f«263.
* 3a:V * 4c5x**

'
11. -2x1/2.

3. -2a6c2.
^ 2^^. 9.-1^- ^o _ 3«!

4. 11 6V. 3 ?/3 3 5 x3'

Write the cube of each of the following expressions :

13. 2al)\ 16. -3a3&.
^^^ 19. 7:^3^4.

14- 3^^-
17 J_.

'^- -5^ 20. -fa^.
15. -2a?c'^. ' 3?/'2

Write the value of each of the following expressions

:

j

21. {ZaVy.
24. (-ly. 26. C^iL'V. 28. I -^-^\\

23. Ui). - (II)- - (-f)- - [-wr
TO SQUARE A BINOMIAL.

188. r>y multiplication we have

{ci + hf = {ii-^h){a + h) = a- ^-2 ah + b- . . (1),

(rt-6)2 = (a-6)(a-6) = a'^-2«6 + 6^'
. . (2).

Rule I. The square of the sum of two quantities is equal

to the sum of their squares increased by twice their product.
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Rule II. The sqnare of the difference of tim qucmtities is

equal to the sum of their squares diminished by twice their

product.

Ex.1. (x + 2yy = x^ + 2^x-2y-\-{2yy
= x2 + 4ri/ + 4?/2.

Ex. 2. (2 a3 _ 3 ^^2^2 ^=(2 «3)2 _ 2 • 2 a^ • 3 62 + (3 52)2

= 4 a6 _ 12 a362 + 9 54.

189. These rules may sometimes be conveniently applied

to find the squares of numerical quantities.

Ex. 1. The square of 1012 = (1000 + 12)2

= (1000)2 ^ 2 . 1000 . 12 + (12)2

= 1000000 + 24000 + 144

= 1024144.

Ex. 2. The square of 98 = (100 - 2)2

= (100)2 -2-100.2 +(2)2
= 10000 -400 + 4

= 9604.

TO SQUAEE A MULTINOMIAL.

190. We may now extend the rules of Art. 188 thus

:

= (a + by + 2(a + b)c + c' [Art. 188, Eule 1.]

= a' +b'- + r-\-2ab-{-2ac-\-2 be.

In the same way we may prove

(a - b + cy = a^ + b' -{- c^ - 2 ab -\- 2ac - 2bc

(a + 6 + c + dy =a' + b' + c'-^d' + 2 ab + 2 ac

-\-2ad-\-2bc-\-2bd-\-2cd.

In each instance we observe that the square consists of

(1) the sum of the squares of the several terms of the

given expression;

(2) twice the sum of the products two and two of the

several terras, taken with their proper signs ; that is, in each
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product the sign is + or — according as the quantities com-

posing it have like or unlike signs.

Note. The square terms are always positive.

The same laws hold whatever be the number of terms in

the expression to be squared.

Rule. To find the square of any multinomial : to the sum
of the squares of the several terms add twice the product (with

the proper sign) of each term into each of the terms that follow it.

Ex. 1. {x-1y-^zy = x'^+^y'^-\-^z'^-2'X'2y-2-x-Zz+2.1y'^z

= x^ -\- 4:if + 9 z^ - 4:xy - 6 xz + I2yz.

Ex.2. (l + 2ic-3a;2)2z=l + 4a:2+9xH2.1.2x-2.1. 3x2-2. 2ic. 30^2

= 1 +4x2 + 9x4 + 4x- 6x2 -12x3
= 1 + 4 X - 2 x2 - 12 x^ + 9 x*.

EXAMPLES XX. b.

Write the square of each of the following expressions

:

1. a + 36. 3. x-5^. 5. Sx-y. T. 9x-2y.

2. a-Sb. 4. 2x + 3y. 6. 3x + 5?/. S. 6ab-c.

9. a - h - c. 1^. xy + yz + zx. ^^ « _ 2 6 + -.

10. «+6-c. ,_
,

,

'2 4
15. X —y -{- a — b.

11. « + 26 + c. 1Q «_q7, _§
12. 2a-36 + 4c. 16. 2x + 3^/ + « - 26. ^»-

3 2

13. x2-2/2-2;2. 17. m-n-p-q. 20. |x2-x+|.

TO CUBE A BINOMIAL.

191. By actual multiplication, we have

(a + by = (a+h)(a-\-b)(a-{-b)

= a^-{-3a'b-}-Sab'-^b^ . . . (1),

(a-by=a'-3a'b-\-3ab''-b^ . . . (2).

From these results we obtain the following rule :
—

Rule. To find the cube of any binomial: take the cube of

the first term, three times the square of the first by the second,

three times the first by the square of the second, and the cube of

the last.
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If the binomial be the sum of the quantities, all signs will

be + ; if the difference of two quantities, the signs will be

alternately + and — , commencing with the first.

EXAMPLES XX. c.

Write the cube of each of the following expressions

:

1. x + a. 5. x2 + 4y2.
^

^_2b^ ^^ j^_^^
2. x-a. 6. 4 ic2 _ 5 ^/2.

3 3

Z. x-2y. 7. 2 a3 _ 3 i^-i, ^^ « ^ ^^

4. 2 «& - 3 c. 8. 5 x^ - 4 w*. ^ 6

TO CUBE ANY MULTINOMIAL.

192. Consider a trinomial

:

(^ci-^b-^cy=la + (b + c)y

= a'-i-3d\b + c) + 3a(b + cf + (?> + cf

= a^j^h^ + c^-{-3 a\h + c) + 3 lr{a + c)

-\-3c\a-\-h) + Q>abc.

Rule. To cube a multinomial : take the cube of each term,

three times the square of each term by every other term, and

six times the product of every three different tenns. The signs

are determined by the laiv of signs for multiplication.

4. a + bx + x^.
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In these results, spoken of as expansions, we notice that

:

(1) Tlie number of terms equals the index of the binomial

plus one.

(2) The exponent of a in the first term is the same as the

index of the binomial, and decreases by one in each succeeding

term.

(3) The quantity b appears for the first time in the second

term of the expansion ivith an exponent 1, and its exponent

increases by one in each succeeding term.

(4) The coefficient of the first term is 1.

(5) TJie coefficient of the second term is the same as the

index of the binomial.

(6) The coefficient of ayiy term may be found by midtiplying

the coefficient of the pireceding term by the exponent of a in

that term, and dividing the result by the exponent of b plus 1.

Ex. 1. Expand (a + hy.



[

INVOLUTION. 175

Performing the operations indicated, we have

a^ + 6a'b-3a'c-^12 ah'' - 12 ahc + 3 ac^ + 8 6^ - 12 bh

Note. A full discussion of the Binomial Theorem for Positive

Integral Index is given in Chapter XXXVII.

EXAMPLES XX. e.

Expand the following expressions

:

1. (x-Vy)^. 9. (^x2 + ^3)5. 14, (^_^4.c)3.

2- {a-h)^. ^^ ia% d^\^
10.

3. (2 a + 6)6.

4. (3x+2?/)5. _ [2 ahc 2 c¥11 / 2a&c 2c¥y
'

V 3 5 j

'

5. (2x-3&)5.

6. (C2 + ^3)6, .. /9,T 7.2 \ 5

- (V"-!y

16. (a + &-2c)4.

17. {a + h + c- ay.

7. (2a6-c2)5. Vx z) 18. (a + 2 64 c-2f?)3.

8. (3a2&2_2c#)5. 13. (a + 26 + 3c)3. 19. (« _2 6 + c-(^)4.

20. Find the middle term of (a + l)io.

21. Find the two middle terms of {x — ?/)ii.

22. Find the term independent of a in
(
— - —

J

•
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Evolution'.

195. The root of any proposed expression is that qnantitr

which being repeated as a factor the requisite number of

times produces the given expression. (Art. 14.)

The operation of finding the root is called Evolution: it

is :!ir iziTerse of Involution.

196 ^ " ^ Rule of Signs vre see that

.1 ._y iven root of a ^positice quantity may be either

positive or negative;

(2) no negative quantity can have an even root

;

(3) every odd root of a quantity has the same sign as the

quantity itself.

XoTE. It is especially worthy of notice that every positive quantity

has two square roots equal in magnitude, but opposite in sign.

Ex. ^(9<^Qfi)= -Zaj-\

In the present chapter, however, we shall confine our

attention to the positive root

EVOLmOX OF MONOMIALS.

197. From a consideration of the following examples we
will be able to deduce a general rule for extracting any

proposed root of a monomial

Examples. (1) V(«*^)= «*^ because {(i^y= cfib*.

(2) ^(- 2?)= - x» because (-ac»)» = -z®.

(3) ^(<«>)= c* because (c*)» = c».

(4) ^(81 x«)= 3 z5 because (3 x»)* = 81 x^.

176
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Rule. (1) Find the root of the coeMcient hy Arithmetic,

and itrf^jix the proper sign found hy Art. 42.

(2) Divide the exponent of every factor of the expression

by the index of the proposed root.

Example?. (1) ^(_61z«)= - 4^2.

(2) ^(I6a^= 2a^.

It will be seen that in the last case we oi)erate separately upon, liie

numerator and the deniminator.

EXAlklPLES XXI a.

Write the square root of each of :lr : : 11 : ^ng expressions

:

1. Aa-h\ 5. 81(i«&8. g 324 r'^ ^^ 2-56 :?V

2. 9x^y^. 6. 100 a*. I'^Qjr 2S9p^

3. 2.5 jr*^. 7. c^b^c^. jQ 8lQ^g ^ 400 <r*^^'

4. IQa^l^. 8. a?^Ari2, "36?^ " &l;riy^^

Write the cube root of each of the following expressions

:

13. '2:€t^h^c\ 16. -Z^Za^j^. jg
87^ 2^ 'II x^

14. -8ai-^6^ ,. :ri5v«
''^^"^ ^-^

17. - 125 ':filP „, :>4:3 ;ri5

15. Mi^y^z^. ^^ 19-
^i^^;:^

21. -T^^-^-

Write the value of each of the following espressions

:

22. <(729a^-=?^). ^ : J28^ . ^i^

23. ^^(2.56aSx«). '^ "^ ^___

24. ^ -zi^^i^). ^^ \^rr' ^- A^Sr

zvoLm<:)x of multes-o^iials.

198. The Square Root of Any Multinomial. Since the

square of a + & is o^ + 2 a5 + 6^. we have to discover a pro-

cess by which a and h. the terms of the root, can be found
when a- -{- 2 ab -\- Ir is g:iven.

The first term, a, is the square root of o^.

Arrange the terms according to powers of one letter a.

and its square root is a. Set this
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down as the first term of the required root. Subtract a^

from the given expression and the remainder is 2 ab + b^ or

(2a + b)xb.
Thus, b, the second term of the root, will be the quotient

when the remainder is divided by 2 a + b.

This divisor consists of two terms

:

1. The double of a, the term of the root already found.

2. b, the new term itself.

The work may be arranged as follows

:

o^

2a-\-b 2 ab + b^

2 ab + ?>2

Ex. 1. Find the square root of 9x^ — 42xy -\- i9y\

9x^-i2xy + 49 y^{Sx-7y
9^

6x-7 y -42xy + 49 y^

-42xy + 49 y^

Explanation. The square root of 9 x^ jg 3 x, and this is the first

term of the root.

By doubling this we obtain 6x, which is the first term of the

divisor. Divide — 42 xy, the first term of the remainder, by 6 cc and
we get —7y, the new term in the root, which has to be annexed both

to the root and divisor. Next multiply the complete divisor by — 7 ?/

and subtract the result from the first remainder. There is now no
remainder and the root has been found.

The process can be extended so as to find the square root of any
multinomial. The first two terms of the root will be obtained as

before. When we have brought down the second remainder, the first

part of the new divisor is obtained by doubling the terms of the root

already found. We then divide the first term of the remainder by
the first term of the new divisor, and set down the result as the next

term in the root and in the divisor. We next multiply the complete

divisor by the last term of the root and subtract the product from the

last remainder. If there is now no remainder the root has been

found ; if there is a remainder we continue the process.

Ex. 2. Find the square root of

25 x2a2 _ 12 xa^ + IG x* + 4 a^ - 24:X^a.



EVOLUTION. 179

Rearrange in descending powers of x.

16x4 -24x% + 25x2a2_ i2xa-3 + 4a4(4x2 - 3x«+ 2a2

16x4

:2 - 3 xa

xa + 2 a2

24 x% + 25x2^2

24x%f 9x2^2

16x-V- 12x«3 + 4a4

16 x2rt2 _ 12 a-«3 + 4 «4

Explanation. When we have obtained two terms in the root,

4x2 — 3 xa, we have a remainder

16x2a2_ i2xa3 + 4«4.

Double the terms of the root already found and place the result,

8x2— 6x«, as the first part of the divisor. Divide 16x2^2^ the first

term of the remainder, by 8x2, ^he first term of the divisor ; we get

+ 2 «2 which we annex both to the root and divisor. Now multiply

the complete divisor by 2 or- and subtract. There is no remainder and

the root is found.

EXAMPLES XXI. b.

Find the square root of each of the following expressions

:

1. x2-10x?/ + 25?/2. 6. 4x4-12x3+29x2-30x+ 25.

2. 4x2-12x?/+ 9?/2. 7. 9x4 -12x3- 2x2 4-4X + 1.

3. 81 x2 + 18 xi/ + ^2. 8. x4 -4x3 + 6x2-4x+ 1.

4. 25x2-30xy + 9?/2. 9. 4«4 + 4^3 _ 7^,2 _ 4^ _f. 4.

5. a4 - 2 a3 + 3 (^2 _ 2 a + 1. 10. 1 - 10 x + 27 x2 - 10 x^ + x*.

11. 4x2 + 9^/2 + 25^2 4- I2x?/ -30?/^-20x^.

12. 16 x6 + 16 x^ - 4 x8 - 4x9 + x^.

13. x6 - 22 x4 + 34 x3 + 121 x2 - 374 x + 289.

14. 25 x4 - 30 ax3 + 49 dP-x'^ - 24 ciH + 16 a*.

15. 4 X* + 4 x2?/2 - 12 X202 + ?/4 - 6 ?/202 + 9 z\

16. 6 obH - 4 a^hc + arl)^ + 4 «2c2 + 9 /^2c2 _ 12 a&c2.

17. - 6 62c2 + 9 c4 + ?)4 _ 12 c2a2 + 4 a4 + 4 a?-b'^.

18. 4 X4 + 9 ?/4 + 13 x22/2 _ 6 X^3 _ 4 a:3y.

19. 1 -4x+ 10x2 -20x3 + 25x4-24x5 + 16x6.

20. 6 acx^ + 4 62^:4 + «2a;io + 9 c2 _ 12 6cx2 - 4 a&x^.

199. When the expression whose root is required contains

fractional termS; we may proceed as before, the fractional



180 ALGEBRA.

part of the work being performed by the rules explained in

Chapter xiii.

200. There is one important point to be observed when
an expression contains powers of a certain letter and also

powers of its reciprocal. Thus in the expression

2.r + i + 4+.r^+^+7ar^-f|,
or X af

the order of descendinr/ powers is

X X- x^

and the numerical quantity 4 stands between x and -•

X

The reason for this arrangement will appear in Chapter

XXII.

Ex. Find the square root of 24 -r ^^ -^^^- §?!.
X' y y- X

Arrange the expression in descending powers of y.

->••- X '

y y-\ X y

X-

§J/_4

8^-8 + ?

^+24
X

32?/

X

8-
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EXAMPLES XXI. c.

Find the square root of each of the following expressions

1.
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1. Three times the square of a, the term of the root

already foimd.

2. Three times the product of this first term a and the

new term b.

3. The square of b.

The work may be arranged as follows

:

a' + Sa'b -^ Sab' + b\a + b

r,3

3 (ay =3 a'

3 X a xb = -\-3ab

(by = ±b^

3a' + 3ab-^b'

3a'b + 3ab'' + b^

3a'b + 3ab'-\-b^

Ex. 1. Find the cube root of Sx^ - SGx^y + 54 x?/'^ - 27 y\

8 x3 - 36 x^y + 54 X7j^- 27 y^(2 x-'Sy

S(2xy =12x2
3x2xx(-3.v)= -ISxy

(-^yy= ±M
12x2- 18x^/ + 92/2

- 36x2?/ + 54x2/2- 27 ?/3

-36x2^ + 54x2/2-272/3

Explanation. The cube root of Sx-^ is 2x, and this is the first

term of the root.

By taking three times the square of this first term we obtain 12x2,

which is the first term of the divisor, and is called the "trial divisor."

Divide — SQx^y, the first term of the remainder, by 12x2 and we get

— 3 2/, the new term in the root. To complete the divisor, we first

annex to the trial divisor three times the product of 2 x, the part of

the root already found, and — 3 y, the new term of the root : this is

— 18x2/. We then annex tlie square of — oy, the new term, and the

divisor is complete. We next multiply this divisor by the new term,

and subtract the result from the first remainder. There is now no
remainder and the root has been found.

The process can be extended so as to find the cube root of any
multinomial. The first two terms of the root will be obtained as

before. When we have brought down the second remainder, we form

the trial divisor by taking three times the square of the two terms of

the root already found, and proceed as is shown in the following

example.
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EXAMPLES XXI. d.

Find the cube root of each of the following expressions

:

1. a^ -h S a"^ -\- S a + I. 2. a^x^ - Z a^x'^y- + S axy* - y^.

3. 64 «3 _ 144 «25 + 108 ab^ - 27 b^.

4. 1 + 3 a; + 6 x2 + 7 x3 + 6 x* + 3 ics + a;6.

5. 1 - 6 X + 21 x2 - 44 x3 + 63 X* - 54 x5 + 27 x^.

6. a^-\-6 a%-Z a^c-{-\2 ab'^-l^ a6c+ 3 «c2+8 63_ 12 62^+ 5c2-c3.

7. 8 a6 - 36 a5 + 66 a* - 63 ^3 + 33 ^^2 _ 9 ^^ + ].

8. 8 x6 + 12 x^ - 30 x* - 35 x^ + 45 a;2 + 27 x - 27.

9. 27 xc - 54 x^a + 117 x^rt^ _ \\Q xhi^ + 117 xSa* _ 54 xcv' + 27 a^.

10. 27 x6 _ 27 x5 - 18 X* + 17 x3 + 6 x2 - 3 X - 1.

11. 24 x*!/2 + 96 x2?/i - 6 x^^ + x6 - 96 x?/^ + 64 2/6 - 56 x^?/^.

12. 216 + 342 x2 + 171 x* + 27 x^ - 27 x^ - 109 x^ - 108 x.

202. We add some examples of cube root where fractional

terms occur in the given expressions.

Ex. Find the cube root of 54 - 27 x^ + - - —

.

X^ X3

Arrange the expression in ascending powers of x,

8 36 + &4 - 27 x3
Vx2

3 X
Vx2J

3x- x(-3x)= -
X2

(-3x)2

12

x4
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'

?/3 2/2 y X X^ X^

r^ r2 18 27 27

27 3 X a:2 x^

„ x3 12x2
,
54 X ,io ,

108 a 48 a^ 8 ^3

a^ a^ a x x^ x^

g 64 gs 192 a2 240 a
^q^ ^

60 x 12 x^
^

x^

x-^ x^ X a «2 (jj3

9 6 6 6a ^ a3 3^2 3 52 53

a & 6^ &2 (^2 (1(3

10 ^^ - ^Q^^ _ 90x2
,

8x^
,

108 X _ 27 j_ 48x_^

y\ yS y2 yQ y
yb

203. Some Higher Roots. The fourth root of an expres-

sion is obtained by extracting the square root of the square

root of the expression.

Similarly by successive applications of the rule for find-

ing the square root, we may find the eighth, sixteenth ••• root.

The sixth root of an expression is found by taking the

cube root of the square root, or the square root of the cube

root.

Similarly by combining the two processes for extraction

of cube and square roots, other higher roots may be ob-

tained.

Ex. 1. Find the fourth root of

81 x* - 216 xhj + 216 x'V _ 96 xy^ -f 16 yK

Extracting the square root by the rule we obtain 9 x^— 12 x?/-f4y2 ;

and hy inspection, the square root of this is 3 x — 2 2/, which is the

required fourth root.

Ex. 2. Find the sixth root of

By inspection, the square root of this is

(--^3)-3(x-i),

3 1
*

which may be written x^ — 3xH ;

X x=^

and the cube root of this is x —

,

X
which is the required sixth root.
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We conclude the subject of higher roots by giving a rule,

which depends upon the Binomial Theorem, for finding the

nth root of any multinomial.

(1) Arrange the terms according to the descending powers

of some letter.

(2) Take the nth root of the first term, and this ivill be the

first term of the root.

(3) When any number of terms of the root have been

found, subtract from the given midtinomial the nth x)ower of

the part of the root cdready found, and divide the first term of

the remainder by n times the (ii — l)th power of the first

TERM of the root, and this will be the next term of the root.

204. AYhen an expression is not an exact square or cube,

we may perform the process of evolution, and obtain as

many terms of the root as we please.

Ex. To find four terms of the square root of 1 + 2 x — 2 x^.

1 + 2 a: - 2 ^2(1 + X - f x2 + f x3

1

2 + a;

2 + 2x-

2 ic - 2 x2

2x+ ic2

3x2

3 x2 - 3 x3 +
2 + 2ic- 3^2 + 1x3 3x3-f.x4

3x3 + 3x4

Thus the required result is 1 + x — | x2 + | x^.

EXAMPLES XXI. f.

Find the fourth roots of the following expressions

:

1. x4 - 28 x3 + 294x2- 1372 X + 240L

2. 16-32+24 8 ^J_
m m'^ m^ m*

3. a* + 8 a^x + 16 x* + 32 ax^ + 24 a^x^.

4. 1 + 4 X + 2 x2 - 8 x3 - 5 x* + Sx-"^ + 2 x« - 4 x" + x8.

5. 1 + 8x + 20x2 + 8x3 -2Gx*-8x5 + 2Ux'i - Sx^ + x«
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Find the sixth roots of the following expressions

:

6. 1 +6x+ 15x-^ + 20x3 + 15x* + 6x5 + «6.

7. x6 - 12 ax5 + 240 ah:^ - 192 a^x + 60 a^x^ - 160 a^^H 64 ««.

8. a6 _ 18 a^x + 135 «%2 _ 540 a'^x'^ + 1215 a%4 _ 1458 ax^ + 729 x^.

Find the eighth roots of the following expressions

:

9. x8- 8 x^?/ + 28 x6?/2- 66 x^y^+ 70 x*?/*- 56 x^y^+28 x^^e_ 8 x?/"

+

y^.

10. {x4 + 2(p - l)x3 + (p2 _ 2p - l)x2 - 2(p - l)x + 1}K

Find to four terms the square root of

11. a2 _ ^, 12. x^ + ^2. 13. «4 _ 3^2. 14. 9 rt2 + 12 ax.

Find to three terms the cube root of

15. l-6x + 21x2. 16.27x6-27x5-18x4. 17. 64-48x + 9x2.

18. Find the fifth root of

aW _ 10 «9 ^ 50 «8 _ 160 a7 + S60 a^ - 592 «& + 720 a*

- 640 a^ + 400 «2 - 160 « + 32.

19. ai'^ - 5 a9 + 20 aS - 50 «7 + 105 a^ - 161 «5 + 21O «* - 200 a^

+ 160 a2 - 80 a + 32.

20. «i'^ + 5 a9 + 5 «§ - 10 a^ _ 15 a6 4. 11 0^5
_f. 15 ^i - 10 a^

— 5rt2 -^ 5 a _ 1.

205. Square and Cube Root of Numbers. Before leaving

the subject of Evolution it may be useful to remark that

the ordinary rules for extracting square and cube roots in

Arithmetic are based upon the algebraic methods we have

explained in the present chapter.

Ex. 1. Find the square root of 5329.

Since 5329 lies between 4900 and 6400, that is between (70)2 and

(80)2, its square root consists of two figures and lies between 70 and

80. Hence, corresponding to «, tlie first term of the root in the alge-

braic process of Art. 198, we here have 70.

The analogy between the algebraic and arithmetical methods will

be seen by comparing the cases we give below.

a2 + 2 a6 + b%a + b 5329(70 + 3 = 73.

a2 4900

2« + 6 2ah + &2 140 + 3 = 143

2 ah + &2

429

429
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Ex. 2. Find the square root of 53824.

Here 53824 lies between 40000 and 90000, that is between (200)^

and (300)-2.

a b c

53824(200 + 30 + 2 = 232

40000

2rt + 6 . . . 400 + 30 = 430113824

1
12900

2(a + 6)+c . . . 460+ 2 = 462 1924

1924

Ex. 3. Find the cube root of 614125.

Smce 614125 lies between 512000 and 729000, that is between (80)3

and (90)3. therefore its cube root consists of two figures and lies

between 80 and 90.

a -r b

614125(80 + 5 = 85.

512000

3 a- = 3 X (80)2 = 19200

3xrtx6 = 3x80x5= 1200

b- = 5x5= 25

20425

102125

102125

206. We shall now show that in extracting either the

square or the cube root of any number, when a certain num-

ber of figures have been obtained by the common rule, that

number may be nearly doubled by ordinary division.

207. If the square root of a number consists of 2/7-1-1

figures, when the first /? + 1 of these have been obtained by the

ordinary method, the remaining n may be obtained by division.

Let X denote the given number ; a the part of the square

root already found, that is the first n -\-l figures found by

the common rule, with n ciphers annexed ; x the remaining

part of the root.

Then ^y=a-^x',
.-. X=a- + 2ax-hx^;

2a 2a ^
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Xo^v y— a- is the remainder after n -\-l figures of the

root, represented by a, have been found; and 2« is the

divisor at the same stage of the work. We see from (1)

that X— a- divided by 2 a gives x, the rest of the quotient

required, increased bv -— We shall show that — is a
" 2 a 2 a

proper fraction, so that by neglecting the remainder arising

from the division, we obtain x, the rest of the root.

For X contains n figures, and therefore oi? contains 2 n

figures at most ; also a is a number of 2 /< + 1 figures (the

last n of which are ciphers) and thus 2 a contains 2 /< -f- 1

figures at least ; and therefore^ is a proper fraction.

From the above investigation, by putting a = 1, we see

that two at^least of the figures of a square root must have
been obtained in order that the method of division, used
to obtain the next figure of the square root, may give that

figure correctly.

Ex. Find the square root of 290 to five places of decimals.

290(17.02

1

271190

1
189

3402
i

10000

I

6804

3196

Here we have obtained four figures in the square root by the ordi-

nary method. Three more may be obtained by division only." using
2 X 1702, that is 3404, for divisor, and 3196 as remainder. Thus

3404)31960(938

30636

13240

10212

30280

27232

3048
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And therefore to five places of decimals \/290 = 17.02938.

It will be noticed that in obtaining the second figure of the root, the

division of 190 by 20 gives 9 for the next figure ; this is too great, and
the figure 7 has to be obtained tentatively.

208. If the cube root of a number consists of 2/7 + 2 figures,

when the first /? + 2 of these have been obtained by the ordi-

nary method, the remaining n may be obtained by division.

Let" ^denote the given number; a the part of the cube

root already found, that is, the first n + 2 figures found by
the common rule, with n ciphers annexed ; x the remaining
part of the root.

Then -^N=a-\-X',

N= d" -\-3a-x + 3aaj2 -f x^-,

Now ^— a^ is the remainder after n -\- 2 figures of the

root, represented by a, have been found; and 3a- is the

divisor at the same stage of the work. We see from (1)

that N — a} divided by 3 a^ gives x, the rest of the quotient
2 3

required, increased by — + -^ . We shall show that this
a 3cr

expression is a x>roper fraction, so that by neglecting the

remainder arising from the division, we obtain x, the rest of

the root.

By supposition, x is less than 10", and a is greater than

102*^+^; therefore — is less than -—— : that is, less than

1 QT^ 10^"— ; and ^ is less than
.,

; that is, less than
i-U o cl" o X -Lv'

1 x^ x^ 11
77—77; l^ence — + —- is less than ---\ — , and

3 X 10"+!' a 3a- 10 3 x 10"+^

is therefore a proper fraction.
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The Theory of Indices.

209. Hitherto all tlie definitions and rules with regard

to indices have been based upon the supposition that they

were positive integers ; for instance,

(1) a" = a- a- a-" to fourteen factors.

(2) a'' X a" - a''+^ = a''.

(3) a'' ^ a' = a''-^ = a'\

(4) (ay = a''''' = a''.

The object of this chapter is twofold; first, to give

general proofs which shall establish the laws of combina-

tion in the case of positive integral indices ; secondly, to

explain how, in strict accordance with these laws, intelli-

gible meanings may be given to symbols whose indices are

fractional, zero, or negative.

We shall begin by proving, directly from the definition

of a positive integral index, three important propositions.

210. Definition. When m is a 2Jositive integer, a"*

stands for the product of m factors each equal to a.

211. Prop. I. To prove that a*^ x a" = a"'+'\ when m and

n are positive integers.

By definition, a"" = a • a • a • • • to m factors
;

a"" = a- a- a-" to n factors

;

.-. rr X «"= (a- a- a-" to m factors) x (a • a • a • • • to n factors)

= a ' a • a • • • to m -|- n factors

^ «"*+", by definition.

191
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Cor. If p is also a positive integer, then

cr X a" X c(F = cr+'^+p
;

and so for any number of factors.

212. Prop. II. To prove that a"* -^ a" = a"""", when m
and n are positive integers, and m is greater than n.

^ _^ „ _ a'" _«•«•«••• to 7?i factors

cC" a' a- a-'- to n factors

= a- a • a •" to m — n factors

213. Prop. III. To prove that (a'")" = a""S when m and

/? are positive integers.

(ccy = a'" • a"' • a"* ••• to n factors

= (a • a • a • • • to m factors) (a • a • (t • • • to m factors) • • •

the bracket being repeated it times,

= a- a- a--- to m?i factors

= cr'*.

214. These are the fundamental laws of combination of

indices, and they are proved directly from a definition which
is intelligible only on the supposition that the indices are

positive and integral.

But it is found convenient to use fractional and negative

indices, such as a% a~'
-,

or, more generally, a'', a~"; and
these have at present no intelligible meaning. For the

definition of a"^ [Art. 210], upon which we based the three

propositions just proved, is no longer applicable when m is

fractional or negative.

Now it is important that all indices, whether positive or

negative, integral or fractional, should be governed by the

same laws. We therefore determine meanings for symbols
p

such as a', a~", in the following way : we assume that they

conform to the fundamental law, a'" x a" = a"'"^% and accept
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the meaning to which this assumption leads us. It will be

found that the symbols so interpreted will also obey the

other laws enunciated in Props, ii. and iii.

p

215. To find a meaning for a% p and q being positive inte-

gers.

Since cC^ x a" = a"*+" is to be true for all values of m and

n, by replacing each of the indices m and n by -, we have

p p p.p ^
a' X a^ = a^ * = a'.

P P P 2p p ^,P 'JP

Similarly, a'^ x a'^ X a'^ = a'' x a'^ = a^ ^ = a''.

Proceeding in this way for 4, 5, >" q factors, we have
p p P gp

a^ X a' X rt^ ••• to q factors = a^

;

that is, (a')' = c(F.

Therefore, by taking the qt\\ root,

p

p

or, in words, a'^ is equal to '^tlie qth root ofct/'.''

5

Examples. (1) x^ = -l/x^.

(2) J = l/a.

(3) 4^=V4^ = V64 = 8.

2 5 2,5 3

(4) a^ X a^ = «3 + 6 = «2.

a 2 a, 2
•^"+'*

(5) A:2 X k^ =^2 +3=^ 30 .

(6) 3«3?>^ X 4«W = 12«^^^62+f ^ 12««6i

216. To find a meaning for a'\

Since a'" x a" = ft"'+" is to be true for all values of m and
n, by replacing the index m by 0, we have

a^ X a" = a°+'' = a"

;

.-. ft"z= — = 1.

a"

Hence any quantity with zero index is equivalent to 1.

Ex. x*-<^ X a;*'^?' = x*~'^+*^~* = x*^ = L
o
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217. To find a meaning for a~'\

Since a'" x a" = «"*+" is to be true for all values of ??i and
n, by replacing the index m by — ii, we have

a~
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220. The following examples will illustrate the different

principles w^e have established.

.-,. 3a-2 Sx
Examples. (1) -—- = ——•

.^. 2a^ xa^ x6 oT^ ^ 4 ^
i+|-i+f-f ^ 4 ^_i ^^ ^

^ ^
f, -% % 3

'

3 3 a
9a 3 X a2

(4) 2 V« + -^ + «^ = 2 a^ + 3 a^ + a2

a~2

=:5a2 + (fi = a^(5 + a^).

EXAMPLES XXII. a.

Express with positive indices :

1. 2x i
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222. To prove that (a6)" = a"6", whatever be the value of

n ; a and b being any quantities whatever.

Case I. Let n be a positive integer.

Now (ahy =:ab ' ab • ab '•' to n factors

= (a • a • a • • • to n factors) (b -b -b •-•ton factors)= a''b'\

Case II. Let n be a positive fraction. Replacing n by -,

where p and q are positive integers, we have {aby = (ab) *.

p p

Now the gth power of {abf =l(aby\^={ab)p, [Art. 221.]

= a^6^ = (a'6*). [Case I.]

p p p

Taking the gth root, (ab) ^ = «" 6^

Case III. Let n have any negative value. Replacing n

by — r, where r is positive,

(abY = (aby = -J— =— = a'^-b-" = a''b\
(aby a^'b''

Hence the proposition is proved nniversally.

This resnlt may be expressed in a verbal form by saying

that the index of a product may be distributed over its factors.

Note. An index is not distributive over tlie terms of an expres-

sion. Thus (a2 + &2)2 is not equal to a + h. Again {a?- + &"2)^ is

equal to ^cfi + 6^^ and cannot be further simplified.

Examples. (1) (yz')'*-''(zxy(xy)-^ = y'^-'^ z'^-'^ z'^x'^x-'^y-'^ — ?/«-2c^«.

(2) {{a - hYY^ X {{a + ?>)-^}' = {a - hy^^ x {a + 5)- *'

= {(« - 6)(a + &)}-*' = (a2 _ 52y-w

223. Since in the proof of Art. 222 the qnantities a
and b are ivholly imrestricted, they may themselves involve

indices.
114 _i 2.2 _2.i4.

Examples. (1) (x^if^)^ -^(x^y'^) ^ =xHj~^ -^x ^y^=x^ij-'^.

= (a3& 2-f-Va2&-3)6= (a35 2^^^^ 2)6 ^ (a.3)6^(,^.
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EXAMPLES XXII. b.

Simplify and express with positive indices :

1. (Va^y.

2. (Vx^^)-K

3. (a:«i/-»)3x(rV)-«.

8a-3J

W(^"¥:

8. ^/^/^K

10. (cc-h«/a;)~.

11. (X X :!yx n)l-n.

12. (^x*-- ^xy^'

_1

13. Vo^ X Vrt6^.

14. V^aft-ic--^ X (a-i6-2c-4)

15. y/c^^ X («4-i)-^

16. ^x-^^y^ -f- vV^J^.

17. («"^^r.)-3 X Vx-^y/a-^-
1 1

18. V^a^^+^P^^ -- (an 5"n)ft.

19. ^(a + 6)5 X (a + ?>)"i

20. {(a;-?/)-3}«-{(x + ?/)"}3.

2L f^-%fii^y.

23. (a"M^aa;"^^a;^)i

24. v'Ca + 6)6 X («2 - lf~y^.

27.
f 5/^^l:^x^^/^«^V'

28.
</(ff3^3 ^ ^6)

v/(66 - a353^-i

n

29. (a«'-i)'^i +

30. (.xw+i)'*^-! _]_

31.
{

«^-

i/«^
X «2(p-?) }"•

2/"

25.

26.

(S)'-(%^)""

34.

35.

fxr^\ '^ (i/x-^y^

X' Z

2n X (2"-i)"
X

-I *x

\^;-

2«+i X 2"-i 4-"

2»»+i 4n+l

(2h)"-i (2«-1)»t—lAn-f 1

224. Since the index-laws are universally true, all the
ordinary operations of multiplication, division, involution,

and evolution are applicable to expressions which contain

fractional and negative indices.
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225. In Art. 200, we pointed out that the descenclin<

powers of x are

.3 i 1 1 1

X X- XT

A reason is seen if we write these terms in the form
r\iO /\»- /\%L /)»0 /)»— 1 /->»—- /)>—

3

Ex. 1. Multiply 3 x~3 + X + 2 a:* by x^ - 2.

Arrange in descending powers of x.

X +2x'^ -\-Sx~^

x^ -2

x^ +2x +3
-2x - 4 a^s _ 6 .J-

3

4a:3 +3 6a; 3

Ex. 2. Divide 16 «-3 - 6 «-2 + 5a-i + 6 by 1+2 a-\

2a-i + 1)16«- 5 a-i + a-i + 6

16a-3+ 8a-2

14 «-^- 7a-i

12a-i + 6

12 a-i + 6

Ex. 3. Find the square root of

4x2^^ _2x + ^+a;3-4 V(^^^"^)-
y y-', 4

Use fractional indices, and arrange in descending powers of x.

x^-ixHj~^-\-ixhj--^+x^y^-2x + ^{(x^-2xf^+^

2x2 -2xy 2

2 x'-^ — 4 x?/ 2
-f

4 X -
?/ 2-1-4 x2?/-i

5 _i
4x-y 2^ 4^2^-1

3 1 ?/

x^^/2-2x+|

3 1 ?/

x^l/2-2x + 4

Note. In this example it should be observed that the introduction

of negative indices enables us to avoid the use of algebraic fractions.
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EXAMPLES XXII. c.

1. Multiply 3x3 - 5 + 8x~3 by 4x^ + 3x"i
3 1 _1 1 _1 _3

2. Multiply 3a^-4a^-a ^ by 3a^ + a ^ -Ga ^.

3. Find the product of c* + 2 c^* — 7 and 5 — 3 c^* + 2 c=^.

4. Find the product of 5 + 2 x^<^ + 3 a;~2« and 4 x« — 3 a*
-«•

5. Divide 21 x + x^" + x^ + 1 by 3x3 + 1.

6. Divide 15 a - 3 a^ - 2 a~3 + 8 a-i by 5 a^ + 4.

7. Divide 16 cr^ + 6 a-2 + 5 «-i - G by 2 a-i - 1.

8. Divide 5 63 _ 6 6^ - 4 6"3~ - 4 &"3 - 5 by 6^-2 6"i

9. Divide 21 a^x + 20 - 27 a* - 26 a'^^ by 3 a^ - 5.

10. Divide 8 c-" - 8 c» + 5 c^'* - 3 c-^" by 5 c» - 3 c-».

Find the square root of

11. 9x- 12x^ + 10-4x"^ + x-i.

12. 25a^ + 16-30a-24a^ + 49ai

13. 4x« + 9x-« + 28-24x~^- 16x^.

14. 12 a=* + 4 - 6 «3x + f^4x + 5 ^20:,

15. Multiply a^ - 8 a"^ + 4 a"^ - 2 a^ by 4 «"^'
4- a^ + 4 rt"i

16. Multiply 1 - 2 ^x - 2 x^ by 1 - {/x.

17. Multiply 2 \/a5 - rt^ - - by 2 a - 3^/- - a "3.

a Ma

18. Divide \/x^ + 2 x^ - 16 x~^ - — by a:^ + 4 x"^ +—

•

X V^
19. Divide 1 - V« -A + 2 «2 by 1 - rA

9,

—

1 1ft 2 5 Q
20. Divide 4W - 8 x3 - 5 + ir. + 3x~3 by 2 x^^ - '^'x - -^.

x/x ^x
Find the square root of

21. 9x-4-18x-3Vy+^-6^(^2) + 2''-

22. 4Vx3 - 12^(.x3|/)+ 25Vi/ - 24i^(^^) + 16x"'>

23. 8lf^^+l'\ + 36^(xV^-l)- 158^^-
V y- J y/y y

24. ^"%l +^ + L=jiA^-0^y.
16 ^y^ 2x
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226. The following examples will illustrate the formulce

of earlier chapters when applied to expressions involving

fractional and negative indices.

h p h p h h h p ^ _P P P

Ex.1. {a^-¥){ci"^-^b~~^) = a''~''-a''b^-\-ah «-Z>^~«

h p h p

= 1 - a'h'^ + a^b~^ - 1

h _p __h p

= a% ^ -a n>^.

Ex. 2. Multiply 2 x^p - a;? + 3 by 2 x^-p + xp - S.

The product = {2 x^p - {xp - 3)} {2 x^p + (x^' - 3)}

= (2 x^p)'^ - (xi' - 3)2 =z 4 x^p -x~p + GxP- 9.

Ex. 3. The square of 3 x^ - 2 - x~^

^ 9a; + 4 + x-i - 2 . 3x^ . 2 - 2 . 3x* • x"^ + 2 . 2 . sc"^

= 9 X + 4 + x-i - 12 x^ - 6 + 4 x"^

= 9 X - 12 x2 - 2 + 4 x"^" + x-i.

3n 3n n n

Ex.4. Divide a^ +a ^ by a^ + a -.

Sn 3n " _

"

The quotient =:{a^ + a ^ )
-^ (a^ + « ^)

n n w _n

= {(«')' + («" 2)3} -4- (aVa ')

= (a^)2 _ ^^ . rt~^ + (a'^)'-^ = an - 1 + «-«.

EXAMPLES XXII. d.

Write the value of

1. (x^-7)(x^ + 3). 3. (7x-9y-'^)(lx + 9y-^).

2. (4x-5x-i)(4x + 3x-i). 4. (x»» - i/'OC^^'*" + 2/"")-

1 a

5. {a--2a-'y. 6. («- + ax)2. 7. (a:2_ix-«)2.

8. (5 x«?/* - 3 x-«y-*) (4 x«^^ + 5 x-«?/-*).

9. (ia3-a~^)2. 10. (3x«?/-^ + 5x-''«/^)(3x«i/*- 5x-«2/-*).
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«"")^-
13. {(a + Z>)^ + (a-6)^2.

12. (xa -x~~a + xy. 14. {(a + 6)^ - (a - h)~^
1 1

Write the quotient of

15. a: - 9 a by cc^ + 3 a^ 20. 1-8 a-3 by 1 - 2 a-i.

16. xt-27byx^-3. 21. a^^-x6bya2x + ^3.

17. «2^- 16 by ax -4. ^2. a:"* - 1 by :«-i + 1.

18. x^^ + 8 by a:« + 2. 23. x^ -Wij x^^ - 1.

19. c2x _ c-x by c- - c-1. 24. x^" + 32 by x^ + 2.

Find the vahie of

25. (ic + ic^ - 4) (a; + x^ + 4). g^ x-Ta;^

1 _1 1 1 X— b-^/X —
26. (2a;3+4+ 3a; 3)(2x3+4-3x ^). ^

27. (2-a:3 +x)(2+xHx). g^
x^ - 4 ^^-^

28. (ax + 7 + 3 a-x) (ax _ 7 _ 3 cr^)

.

^x^ + 4 + 4 x~^

a^ -SaH ^,,7
ft- + ah y/a

U v"" y/x)

2 3,

—

2 32.
a3 + 2\/a6 + 4&3 ah - h^ V«



CHAPTER XXIII.

Surds (Radicals).

227. A surd is an indicated root which cannot be exactly

obtained.

Thus V^j a/5? i/(^^ Va- + 0' are surds.

By reference to the preceding chapter it Avill be seen that

these are only cases of fractional indices; for the above

quantities might be written

Since surds may always be expressed as quantities with

fractional indices they are subject to the same laws of

combination as other algebraic symbols.

228. A surd is sometimes called an irrational quantity
;

and quantities which are not surds are, for the sake of

distinction, termed rational quantities.

229. Surds are sometimes spoken of as radicals. This

term is also applied to quantities such as Va^, V9, V27,
etc., which are, however, rational quantities in surd form.

230. The order of a surd is indicated by the root symbol,

or surd index. Thus -s/x, ^a are respectively surds of the

third and nth. orders.

The surds of the most frequent occurrence are those of

the second order ; they are sometimes called quadratic surds.

Thus -y/3, ^a, a/x + y are quadratic surds.

231. A mixed surd is one containing a factor whose root

can be extracted.

203
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This factor can evidently be removed and its root placed

before the radical as a coefficient. It is called the rational

factor, and the factor whose root cannot be extracted is

called the irrational factor.

232. AVhen the coefficient of the surd is unity, it is said

to be entire.

233. When the irrational factor is integral, and all rational

factors have been removed, the surd is in its simplest form.

234. When surds of the same order contain the same

irrational factor, they are said to be similar or like.

Thus 5V3, 2^3, ^^3 are like surds.

But 3^2 and 2^3 are imlike surds.

235. In the case of numerical surds such as ^2, ^5, •••,

although the exact value can never be found, it can be deter-

mined to any degree of accuracy by carrying the process of

evolution far enough.

Thus V^ = 2.236068..-;

that is V^ lies between 2.23606 and 2.23607; and therefore

the error in using either of these quantities instead of y'5 is

less than .00001. By taking the root to a greater number
of decimal places we can approximate still nearer to the true

value.

It thus appears that it will never be absolutely necessary to

introduce surds into numerical work, which can always be

carried on to a certain degree of accuracy ; but we shall in

the present chapter prove laws for combination of surd

quantities which will enable us to work with symbols such

as ^2, ^5, -^a, ... with absolute accuracy so long as the

symbols are kept in their surd form. Moreover it will be

found that even where approximate numerical results are

required, the work is considerably simplified and shortened

by operating with surd symbols, and afterwards substituting

numerical values, if necessary.
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REDUCTION OF SURDS.

236. Transformation of Surds of Any Order into Surds of a

Different Order having the Same Value. A surd of any order

may be transformed into a surd of a different order having

tiie same value. Such, surds are said to be equivalent.

Examples. (1) ^2 = 2^ = 2^2 ^z \/2^.

(2) p/a^aP- api = ^^a?.

237. Surds of different orders may therefore be trans-

formed into surds of the same order. This order may be

ayiy common multiple of each of the given orders, but it is

usually most convenient to choose the least common mul-

tiple.

Ex. Express ^a^, -^b'^, ^a^ as surds of the same lowest order.

The least common multiple of 4, 3, 6 is 12 ; and expressing the

given surds as surds of the twelfth order they become ^^a^, ^^h^,

238. Surds of different orders may be arranged according

to magnitude by transforming them into surds of the same

order.

Ex. Arrange ^3, ^6, ^10 according to magnitude.

The least common multiple of 2, 3, 4 is 12 ; and, expressing the

given surds as surds of the twelfth order, we have

V3 =736 =1^729,

^10 = ^^103 = 3^1000.

Hence arranged in ascending order of magnitude the surds are

V3, </10, ^6.

EXAMPLES XXIII. a.

Express as surds of the twelfth order with positive indices :

1. x^. 2. «-i -^ a~2, 3. \/«a-3 ^ Vcr^x'^.

4. -L. 5. -J-. 6. Ill-,-
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Express as surds of the wtli order with positive indices :

1- -- x"2-
7. V^K 9. aK 11. ^^„^- 13. -^-

8. ie«. 10. J -,r 12. ^. 14. -^.

Express as surds of the same lowest order :

15. V«> v^«^- 18- y/^S 'V^^""- 21. V5, ^11, ^13.

16. ^d\ y/a. 19. \/«3p, \/a6. 22. ^8, V^, v/6.

17. ^x\ ^x6, -^0:5. 20. V^^ '^^9^. 23. ^2, ^8, ^4.

239. Reduction of a Surd to its Simplest Form. The root

of any expression is equal to the product of the roots of

the separate factors of tile expression.

For ^b = (aby =ah\ [Art. 222.]

= ^a'^b.

Similarly, Vahc = ^a • -y/b • -^c
;

and so for any number of factors.

Examples. (1) ^15 =^3 • */5.

(2) ^a^b = -^a^ .^b = a'^^b.

(3) y/60 =y/25.y/2=by/2.

Hence it appears that a surd may sometimes be expressed as the

product of a rational quantity and a surd ; when the surd factor is

integral and as small as possible, the surd is in its simplest form [Art,

233].

Thus the shnplest form of y/\2^ is 8y'2.

Conversely, the coefficient of a surd may be brought under the

radical sign by first raising it to the power whose root the surd ex-

presses, and then placing the product of this power and the surd factor

under the radical sign.

Examples. (1) 7 V^ = V^^ • V^ = \/245.

(2) a^h = -^a^ -^b^Vcfih.

In this form a surd is said to be an entire surd [Art. 232].

By the same method any rational quantity may be expressed in the

form of a surd. Thus 2 may be written as Vi, and 3 as v27.
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240. When the surd has the form of a fraction, we mul-

tiply both numerator and denominator by such a quantity

as will make the denominator a perfect power of the same
degree as the surd, and then take out the rational factor as

a coefficient.

Examples. (1) VJ = Vf = V2 x i = i\/2.

^oN Imx _ jabnix _ 1 ,

EXAMPLES XXIII. b.

Express in the simplest form :

1. V288. 6. 2V720. 10. v^- 2187. 14. ^.
2. ^m.

Y 5V245. 11. \/36^. i^
3. ^256.

^
,

15. Vl^
>. T..OO 8- v'1029. 12. V27«355. >' ?>

5. 3V150.
9- </3125. 13. V|. 16. .^^^

17. v/- 108 x*r^. 18. \/x3»?/-"+^- 19. Vx»+^?/2i'.

20. Va3 + 2 ff'-^6 + a6--^. 21. \/8 x-^?/ - 24x^ + 24 x'^i/S - 8 xij^.

Express (1) as entire surds, (2) in simplest form :

22. 11 V2.

23. 14 V5.
29. « J3^. 33. «-c/^^

x2 \ a ^ ^«^-'

30.
25. 5^6^ ""• 3^

26. tVV-V-

^27x4. 34. l_^E:r
\ ^2 X»* ' ?/3

27.

28.

2c >'9a25

ADDITION AND SUBTRACTION OF SURDS.

241. To add and subtract like surds : Reduce them to their

simplest form, and prefix to their common irrational part the

sum o/l the coefficients.
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Ex. 1. The sum of 3 V20, 4 ^5, —
5

= 6 vo + 4 Vo + J V5 = ^ V5.
5

Ex. 2. The sura of x y/8x^a + y y/- y^a - z yf^
= x-2x-^a-^y{-ij)^a- z- z -^'a

= (2x'^-y2-z')^a.

242. Unlike surds cannot be collected.

Thus the sum of 5-^2, -2^3, and v6 is 5^2-2^3
-{-\/6, and cannot be further simplified.

EXAMPLES XXIII. c.

Find the value of

1. 3 V45 - V20 + 7 y/o. 7. 3 */l62 - 7 */S2 + ^1250.

2. 4 V63 + 5 V7 - 8V28. 8. 5 ^=^54 - 2 ^^^"^^16 +4
3. ^U - 5 V 176 + 2 V^O. 9. 4 Vl28 + 4 V75 - 5 vl62.

4. 2 V363 - 5 V243 + V192. 10. 5 V24 - 2 V54 - V^-

5. 2^189 + 3 ^875 - 7 ^56. 11. V2'^2 - V294 - 48 Vi-

6. 5 ^81 - 7 ^192 4 4 ^648. 12. 3 Vl47 - | Vj - ViV

MULTIPLICATION OF SURDS.

243. To multiply two surds of the same order: Multiply

separately the rational factors and the irrational factors.

1 1 11
For a ^x x b ^y = ax'' x by"" = abx'Y

1

= ab (xyy = ab Vxy.

Examples. (1) 5 V^ x 3 ^7 = 15 V21-

(2) 2^x-x2>y/x = Qx.

(3) </^^+lj X VcT^ = ^(a + 6)(a-&)= ^«2 _ />2.

If the surds are not in their simplest form, it will save

labor to reduce them to this form before multiplication.

Ex. The product of 5^32, V^S, 2V54
= 5 • 4 V2 X 4 V3 X 2 . 3 ve = 480 • V2 • V3 • V<5 = 480 X 6 = 2880.
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244. To multiply surds of different orders : Reduce them

to equivalent surds of the same order, and proceed as before.

Ex. Multiply 5 ^2 by 2 y/5.

The product = 5 ^22 x 2 ^o^ = 10 ^2^ x 5^ = 10 ^500.

EXAMPLES XXIII. d.

Find the value of

1. 2V14XV21. 6. ^e/^T2 X ^:^^2.
j^j 2^xv/3

2. 3V8XV6.
7. Vmx^Ul.

' ' ,-
'—

4. 2V15X3V5. 8. 5VI28X2V^. x^x 3 \2 a*

5. 8Vl2x3v'24. 9. aVb^ x b'^V^. 12. 1aM x -^''^•

DIVISION OF SURDS.

245. Suppose it is required to find the numerical value of

the quotient when ^5 is divided by ^7.
. At first sight it would seem that we must find the square

root of 5, which is 2.236- ••, and then the square root of 7,

which is 2.645..., and finally divide 2.236-.. by 2.645-..;

three troublesome operations.

But we may avoid much of this labor by multiplying both

numerator and denominator by ^7, so as to make the

denominator a rational quantity. Thus

7

Now

= .845...

246. The great utility of this artifice in calculating the

numerical value of surd fractions suggests its convenience

in the case of all surd fractions, even where numerical
p

V7"
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values are not required. Thus it is usual to simplify ^!l^^

as follows

:

v ^

a^b _ a-y/b x ^c _ aVbc

The process by which surds are removed from the denomi-

nator of any fraction is known as rationalizing the denomina-

tor. It is effected by multiplying both numerator and
denominator by any factor which renders the denominator
rational. We shall return to this point in Art. 250.

247. To divide surds : Express the result as a fraction and
rationalize the denominator.

Ex. 1. Divide4V75by 25V56.

The quotient ^JVIJ, 4 x SyS _2y3
25V56 25x2Vl4~5Vl4

_ 2 yS X V14 _ 2 V42 _ V42
~5V14 X V14~5 X 14~ 35

*

^h _ ^hx ^c _ y/bG__ ^/bc
Ex. 2.

EXAMPLES XXIIL e.

Find the value of

1. V10-V2. 4. 21V384--8V98. 7. Gy/U^2y/2l.

2. 3V7-^2\/8. 5. 5V27--3V24. 3^11 5

3. 2V120 - v3. 6. -13V125--5V65. * 2V98^7V22*

^ 3V48 _ 6V84^ 10.
_3_^f2^_,r^8^

> ^a — b '(5V112 V392 a-b'^a-b > (a - 6)^

Given ^2 = 1.41421, v^ = 1.73205, V^ = 2.23607, ^6 = 2.44949,

^7 = 2.64575 : find to four decimal places the numerical value of

11. ii. 14. ii. 18. -i-. 21. 25

V2 V6 2v3 V252

12. ^. 15. -^^. 19. ^_. 22 '256/25C

V^' \/5
'"'

v'oOO"
*""

\1575'

^ 16. 144 ^V«. 2, ^ 23. _A,.

V7* 17. V2-V3. "

V243' 2^96
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COMPOUND SURDS.

248. Hitherto we have confined our attention to simple

surds, sucli as -^5, -^a, V.^• + y- An expression involving

two or more simple surds is called a compound surd ; thus

2-y/a — 3-y/b; -^'a + ^b are compound surds. A binomial,

which has a surd in one or both of the terms, is called a

binomial surd.

249. Multiplication of Compound Surds. We proceed as

in the multiplication of compound algebraic expressions.

Ex. 1. Multiply 2^x-6 by S^x.

The product = 3v'x(2 V»^ -5) = 6x- 15^x.

Ex. 2. Multiply 2 ^5 + 3^x by V^ - V-^-

The product = (2 ^5 + 3 ^x) ( V^ -
V-'^")

= 2^5 ' V5 + 3v'5 • ^x - 2 V5 • y/x - 3y/x • ^x
= 10 -3x-\- V5x.

Ex. 3. Find the square of 2^x + \/7 — 4x.

(2^x + V7 -4x)2 = (2^xy + (V7-4x)2 + 4 ^x • \/7-4x
= 4x + 7 -4x + 4V7x -4x=2

= 7 + 4\/7x-4x2.

EXAMPLES XXIII. f.

Find the value of

1. (iS^x-5)x2^x. 8. (S^a-2y/x)(2^a + S-^x).

2.
(
V»' - v'«) X 2 V^- 9- (V^ + Vx- 1) X Vx- 1.

3. (v/a + V^) X ^«^- 10- ( Vx + « - Vx - «) X Vx + «.

4. (Vx + 2/
- l)x Vx + ?/. 11. (Vrt + X - 2Va)2.

5. (2V3 + 3V2)2. 12. (2V«-Vl + 4«)2.

6. (V7 + 5V3)(2V7-4V3). 13. (V^Tf^ - Vl^^)2.

7. (3v'5-4v2)(2Vo + 3V2). 14. ( V^Tf^ - 2)(V^+^ - 1).

15. (V2 + V3-V^)(V2+V3+V5)-
16. (V5 + 3V2+V7)(V^'> + 3V2-V7).
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Write the s(iuare of

17. V2 a; + « - \/2 a; - «. 20. SVa'^ + ])2 _ 2y/a^ - b^.

18. Vx2 -2y^-{- y/v? + 2 y'^. 21. 3xV2 - 3V7^- 2a:'-2.

19. V?/i + ?i + Vwi - n. 22. V4 x2 + 1 - V4 x2 - 1.

250. If we multiply together the sum and the difference

of any two quadratic surds, we obtain a rational ^product.

This result should be carefully noted.

Examples. (1) ( V« + \/?>) ( V« - V&) = ( V«)'^ - (V^O^ ^a-h.

(2) (3V5 + 4V3)(3V5 - 4V3) = (3V5)2 -(4V3)2 = 45 - 48 - - 3.

Similarly, (4- Va+ 6)(4+ Va+ 6) = (4)2-( V«+ ?>)2= 16-«-6.

251. Definition. When two binomial quadratic surds

differ only in the sign which connects their terms, they are

said to be conjugate.

Thus o-yjl + 5Vll is conjugate to 2>^1 — 5^11.

Similarly, a — Va^ — x^ is conjugate to a + Va^ — x^.

The product of two conjugate surds is rational. [Art. 250.]

Ex, (S^a-\-Vx-9 a) (3^a - Vx-9a)
z=(3^ay -(y/x-9ay = 9a -(x - 9a)=^ ISa - x.

252. Division of Compound Surds. If the divisor is a

binomial quadratic surd, express the division by means of

a fraction, and rationalize the denominator by multiplying

numerator and denominator by the surd which is conjugate

to the divisor.

Ex. 1. Divide 4 + 3V2 by 5 - 3^2.

The quotient =1+^ ='-±^ x | +|^^

5-3V2 5-3V2 5 + 3V2

^ 20+18 + 12^2 + 15^2 ^ 38 + 27 V2
25-18 1

'

,

Ex. 2. nationalize the denominator of

V«2 ^b--i- a

Tlie expression = —^t= x —:==
Va^ 4- 62

_i_ a y/(fi + ^-2 _ rt

?/2|V^2 + 62_,,|^ V^zM^2 _ a.

(a2 + b'^) - a2
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Ex. 8. Divide ^^ ^ by --—^.

Thequotient ^^^xf^:^
(V3)-2-(V2)^ .

14_12 + 8V3- 7V3

= 2 — y'S, on rationalizing.
2 + ^3

87
Ex. 4. Given ^6 = 2.236068, find the value of

Dininator,

87 _87(7 + 2V5)

7-2V5
Kationalizino; the denominator,

7-2^5 49-20
= 3(7 + 2V5)
= 34.416408.

It will be seen that by rationalizing the denominator we have

avoided the use of a divisor consisting of 7 figures.

253. In a similar manner, where the denominator involves

three quadratic surds, we may by two operations render that

denominator rational.

V2Ex.
V2 + V3 - V5

The expression- V^C V2 + V^ + V^)
( V'2 + V3 - V5)(V2 + V3 + V^)

^ 2 + v6 + yio ^ (2 + V6 + yio) V6
2V6 (2V6;V6

^ 3+V6 + Vl5
6

I

EXAMPLES XXIII. g.

Find the value of

1. (9V2-7)(9V2+7). 4. (2Vll + 5V2)(2Vll-'V2).
2. (3 + 5V7)(3-5V7). 5. (^a -}- 2^b)(^a - 2^b).

3. (5V8-2v7)(5v'8 + 2v7). 6. (3c - 2 Va:)(3c + 2 Vx).

7. (Va+ x—^a)(Va-{-x-]-y/a).

8. (V2i9 + 3g - 2^q)(V2p +3g + 2 V^).

9. ( V« + X + V« — ic) ( Va + x — V« — a-).

XO. (5Vx2 _ 3 2/2 + 7 «) (5Vx2 - 3 1/'-^ -7a).
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11. 20-(lH-3v7). 16. (3 + V5)(V5-2)^(5-V5).
12. 17- (3V7 + 2V3).

13. (3V2-1)^(3V2+1).
14. (2V3 + 7V2)^(5V3-4V2).
15. {2x-y/xy)^{2\'xy - y).

Kationalize the denominator of

19 25V3-4V2 21 V^ + V2
7V3-5V2' '

9 + 2V14"

17.

18.

20. 10v6-2V7 22 2V3 + 3V2
3V0 + 2V7' 5 + 2v<>

' ^"
Va:2+a2+rt

v«
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Case II. Suppose the given surd is -^a -\- -^/b.

Let X, y, n have the same meanings as before ; then

(1) If n is even, ic" — y" is divisible by x + y, and

X" — y''=(x-\-y) (a;"-i — x'^'^y -\ \- xy""-^ — y'''^).

Thus the rationalizing factor is

r^n-l _ ^n^2y
_^ ^

^yn-2 _ ^n-1 .

and the rational product is af^ — ?/".

(2) If n is odd, .t" + y" is divisible by x + y, and

X" 4- y" =z (x~{-y) (x''-'^ — x''~-y H xy"""' + ?/"-i).

Thus the rationalizinsr factor is
^t)

n-l.^n-l _ ^n-2y
_j

^yn-2 _|_ y

and the rational product is x" + ?/'*.

Ex. 1. Find the factor which will rationalize -^S + ^5.
1 1

Let X = S"^, ?/ = 5^; then x^ and y^ are both rational, and

:c*5 - y^ =(^x -\- y) (x^ — x*?/ + x^y^ — x^y^ + x?/* — y^)

;

thus, substituting for x and y, the required factor is

5 41 32 23 14 5
32 _ 32 . 53 ^. 32 . 53 _ 32 . 53 + 3? . 53 _ 58^

5 13 2 14 5

or 32 _ 9 . 53 + 32 . 53 _ 15 4. 32 . 53 _ 53
J

and the rational product is 3"2 _ 53 = 33 _ 52 _ 2.

Ex. 2. Express (5^ + 9^) -- (5^ - 9*)

as an equivalent fraction with a rational denominator.

To rationalize the denominator, which is equal to 5^ — 3^, put

5^ = X, S^ = y ; then since

x^ -y^=(x- y) (x^ + x'^y + xy"- + ?/),

3 2 i 1 2 3

4 4

and the rational denominator is 5- — 3^^ = 5^ — 3 = 22

\

the required factor is 5^ + 5^'
• 3^ + 5^ • 3 f + 3^

;

4 4

ninator is 5- — 3^^ = 5^ — 3

(51 j^ 3?) (5! + 5I . 3? -{- 5! . 3I -|, 3J)the expression

5^ + 2.
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PROPERTIES OF QUADRATIC SURDS.

255. The square root of a rational quantity cannot be partly-

rational and partly a quadratic surd.

If possible let -^n = a-\-^m
;

tljen by squaring, n = a- + m + 2 a ^/m

;

, n — a? — m

that is, a surd is equal to a rational quantity, which is

impossible.

256. If jr + V/ = « + V^' ^^^^ will jr = a and/ = 6.

For if X is not equal to «, let x = a -\- m ;
then

a + m \-^y = a+^b;
that is, y'6 = m + ^y ;

which is impossible. [Art. 255.]

Therefore x = a,

and consequently, 2/ = ^•

If therefore x -f ^y = a + ^b,

we must also have x — ^y = a — -y/b.

257. It appears from the preceding article that in any

equation of the form

«'+V?/ = «H-V^ (1)?

we may equate the rational parts on each side, a)id also the

irrational imrts; so that the equation (1) is really equivalent

to tiDo independent equations, x = a and y = b.

258. If Va+V^==V^+V/' then will ^a-yb

For by squaring, we obtain

a +V^ = ^ + 2Va5y/ + 2/;

.-. a = X + ?/, ^b = 2Vxy. [Art. 257.]

Hence a — -y/b = x — 2\/xy + ?/,

and Va — ^b = ^/x — ^y.
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259. To find the square root of a binomial surd.

Suppose Va + ^b = ^x -f V ^ 5

then as in Art. 258,

x + y^a (1);

2V^-V^ (2).

Since {x — yf = (x -^ yy — 4: xy

= a^-b . . from (1) and (2)

;

.-, X — y = Va" — b.

Combining this with (1), we find

^^a+Va^-b^ ^,,,^y^a-Va^~b^

v^rrv-^=V^±^^^+V- V(ct'-b)

260. The vahies just found for x and y are compound
surds unless or — b is a perfect square. Hence the method
of Art. 259 for finding the square root of a + -^b is of no

practical utility except when a^ — & is a perfect square.

Ex. Find the square root of 16 + 2 ^55.

Assume VlG + 2 ^^55 = y/x + ^y.

Then 16 + 2 y/bb =: a: + 2 \/xij + y ;

.'. x + y = \Q . . . . (1),

2 V^ = 2^55 (2).

Since {x - y)'^ = (a: + y)'^ - ixy

= 162 - 4 X 55 . . . by (1) and (2),

= 4x9.

.: x-y=±6 (3).

From (1) and (3) we obtain

X = 11, or 5, and ?/ = 5, or 11.

That is, the required square root is ^11 + y'5.

In the same way we may show that

Vl6 - 2 v55 = Vll - V^-
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Note. Since every quantity lias two square roots equal in magni-

tude but opposite in sign, strictly speaking we should have

the square root of 16 + 2 ^55 = ± ( Vl^ + V^)'

the square root of 16 — 2 ^^55 = ± (V^ — V^)-

However, it is usually sufficient to take the positive value of the

square root, so that in assuming Va — ^h = y/x — -yjij it is understood

that X is greater than y. With this proviso it will be unnecessary in

any numerical example to use the double sign at the stage of work
corresponding to equation (3) of the last example.

261. When the binomial whose square root we are seek-

ing consists of two quadratic surds, we proceed as explained

in the following example.

Ex. Find the square root of y/ll^ — V147.

Since ^Wo - V147 = V^C V^S - V^l) = V^C^ - V^l)>

^^Yib-^wi = */7 • v^r:^!.

But V5 - V21 =VI
.-. VV175-V147 = </7(V|-VI).

262. To find the square root of a binomial surd by inspec-

tion.

Ex. 1. Find the square root of 11 + 2 ^30.

We have only to find two quantities whose sum is 11, and whose

product is 30, thus

11 + 2 V30 = 6 + 5 + 2 V6 x 5 = ( V^ + V^)^-

.-. Vll + 2V30 = v^ + V^-

Ex. 2. Find the square root of 53 — 12 y'lO.

First write the binomial so that the surd part has a coefficient 2
;

thus 53 - 12 VIO = 53-2 V360.

We have now to find two quantities whose sum is 53 and whose

product is 360 ; these are 45 and 8
;

hence 53 - 12 VIO = 45 + 8 - 2\/45 x 8

=(V45-V8)2;
.-. \/53 - 12 VlO = V4f> - \/8

= 3^5-2^/2.
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Ex. 3. Find the square root of a -\- b +V2 ah + h'^.

Rewrite the binomial so that the surd part has a coefficient 2 ; thus

a + & + V2 a& +
^ 4

We have now to find two quantities whose sum is (a + h) and

whose product is ^ "^—
; these are ^ "^

, and - ; hence
2

.-. A/;7TiTv2"«M^^=\rt + i^+J-

Note. Tlie student should observe that when the coefficient of the

surd part of the binomial is unity, he can make this coefficient 2 if he

will also multiply the quantity under the radical by \.

263. Assuming v « + V^ = x -\- ^y, tlie method of Art.

258 gives us Vet — -^b = x — -y/y.

EXAMPLES XXIII. h.

Find the square roots of the following binomial surds :

1. 7-2^10. 7. 41-24V2. 13. V27 + 2^6.

2. 13 + 2^30. 8. 83+12V35. 14. ^Z2 - ^-l^t.

3. 8-2V7. 9. 47-4V33. 15. 3-^/5 + V40.
4. 5 + 2V0. 10. 21+V5. 16. 2« + 2\/a-^- &2 .

5. 75+12V21. 11. 41- -fV^- 17- (ix-2ay/ax-a;K

6. 18-8^5. 12. 16 + 5V7. 18. a+ x+^2ax+:>:^.

19. 2 a - V3 a^ -2ab- bK 20. 1 + «2 + (1 + «- + «^)^

Find the fourth roots of the following binomial surds :

21. 17 + 12V2. 23. IV5 + 31. 25. 49 - 20 V6.
22. 56 + 24V5. 24. 14 + 8 V3. 26. 248 + 32V60.

Find, by inspection, the value of

27. \/3 - 2^2. 30. Vl9 + 8^3. 33. Vu + 4^6.

28. V4 + 2V3. 31. V8 + 2V15. 34. ViS - 4 ^14.

29. V6-2V5. 32. VQ - 2 Vl4. 35. V29 + 6^22.
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Express with rational denominator

36. - 38.
^^' ^^

.

37. —i—

.

39. V^±v^. 41. —^^3_.
^3-1 V8-^4 V'^+</9

40.

42. — 43. Find value of J 6 + 2V3 ,

2 + ^7 >'33-19v3

EQUATIONS INVOLVING SURDS.

264. Sometimes equations are proposed in which the

unknown quantity appears under the radical sign. Such
equations are varied in character and often require special

artifices for their solution. We shall consider a few of the

simpler cases, which can generally be solved by the follow-

ing method

:

Bring to one side of the equation a single radical term by

itself: on squaring both sides this radical will disappear. By
repeating this process any remaining radicals can in turn be

removed.

Ex. 1. Solve 2y/x- V4a:-ll = 1.

Transposing, 2 ^/x — 1 = \/4a3 — 11.

Square both sides ; then 4a; — ^y/x + 1 = 4 x — 11,

4vx=:12,
y/x = Z;

.'. x = 9.

Ex. 2. Solve
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9. v'2a; + ll =^6. 15. Vic - 4 + 3 = Vx + 11.

10. \/4x2-7x+ 1 = 2 X - If. 16. V9x-8 = SVxTl - 2.

11. V'ic + 25 = 1 + V»;- 17. \/4x + 5 - V^ = \/x + 3.

12. V8x + 33-3 = 2v/2x. 18. \/25a:-29-V4x-ll = S^ic.

13. Vx + 3 + Va; = 5- 19- Vx + 4 a& = 2 a + ^x.

14. 10 -\/25 + 9x = 3V^. 20. V^ + V4 « + x = 2\/?> + x.

265. When radicals appear in a fractional form in an
equation, we must clear of fractions in the ordinary way,

combining the irrational factors by the rules already ex-

plained in this chapter.

Ex. Solve VO + 2 X - V2x =
V9 + 2x

Clearing of fractions,

9 + 2 X - V2x(9 + 2x) = 5,

4 + 2x= V2x(9 + 2x).

Squaring, 16 + 16 x + 4 x"^ = 18 x + 4 x^,

16=:2x,

X = 8.

EXAMPLES XXIII. 1.

S^x-U 4VX-13 ^ ^x

2. 9V^zi23^6Vx-n ^^ Vx_VS^--l—

.

3v»5-8 2^3^-6 "^

Vx"

Vx-2 3VX-13' 11- ^^ + ^+V^"^
y;^

3 Vx + 3 ^ 3Vx- 5

V^-2 S^x-Vi

^ o yx + 3 ^ yx + 9
^

yx + 2 v^ +

g_
2yx-i ^ yx-2

6

10

yx + 2 ^x + l' 12. 2yx-y4x-3=-—^.

2yx + | ya;-| 13. 3yx = ^ +y9x-32.

6yx-7 5^ 7vx-26 ^^^"^^
yx-1 7yx-2r 14. ^x-7= 1

7.
I2yx- 11 _6yx + 5

yx + 7

4yx-4f 2yx + | 15. (yx+ii)(yx-ii) + iio=o.

VrT^+y«;=—1^. 16. 2yx = l^^^-^^-
yiTx 2yx-3
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Imaginary Quantities.

266. An imaginary quantity is an indicated even root of

a negative quantity. In distinction from imaginary quanti-

ties all other quantities are spoken of as real quantities.

Although from the rule of signs it is evident that a negative

quantity cannot have a real square root, yet quantities repre-

sented by symbols of the form V— a, V— 1, are of frequent

occurrence in mathematical investigations, and their use

leads to valuable results. We therefore proceed to explain

in what sense such roots are to be regarded.

When the quantity under the radical sign is negative, we
can no longer consider the symbol ^ as indicating a j)ossible

arithmetical operation; but just as ^a may be defined as a

symbol which obeys the relation ^a x ^a = a, so we shall

define V— a to be such that V— a x V— a = — a, and we
shall accept the meaning to which this assumption leads us.

It will be found that this definition will enable us to bring

imaginary quantities under the dominion of ordinary alge-

braic rules, and that through their use results may be obtained

which can be relied on with as much certainty as others

which depend solely on the use of real quantities.

267. Any imaginary expression not involving the oper-

ation of raising to a j)ower indicated by an exponent that is

an irrational or imaginary expression, can be reduced to the

form a -{- 6V— 1, which may be taken as the general type of

all imaginary expressions. Here a and b are real quantities,

but not necessarily rational. An imaginary expression in
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this form is called a complex number. If a = 0, the form

becomes 6V— 1, which is called a pure imaginary expression.

268. By definition, V^H! x V"^^ == - 1.

that is, (-y/a- V—iy = — a.

Thus the product ^a . V— 1 may be regarded as equiv-

alent to the imaginary quantity V— a.

269. It will generally be found convenient to indicate the

imaginary character of an expression by the presence of the

symbol V — 1 which is called the imaginary unit ; thus

V^^ = V4x(-1)= 2V"=^.

V- 7 a' = -V7a'x(-l) =a^7^/^T.

270. We shall always consider that, in the absence of

any statement to the contrary, of the signs which may be

prefixed before a radical the positive sign is to be taken.

But in the use of imaginary quantities the following point

deserves notice.

Since (— a)x(— b)= ab,

by taking the square root, we have

V— a X V— b = ± -Vab.

Thus in forming the product of V— a and V— & it would
appear that either of the signs + or — might be placed

before Vab. This is not the case, for

V— a X V— b=^a. V— 1 X V^' V—

1

271. In dealing with imaginary quantities we apply the

laws of combination which have been proved in the case of

other surd quantities.

Ex.1. a + bV^^±(c + dV^^) = a ±c + (b ±d)V^.
Ex. 3. The product of a + ^V— 1 and c + dV— 1

^ ac — bd + (6c + ad) V— 1.
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272. The symbol V— i is often rex^resentecl by the letter

i; but until the student has had a little practice in the use

of imaginary quantities he will find it easier to retain the

symbol V— 1. The successive powers of V— 1, or i, are as

follows

:

(V3T)^ = -l, ;^ = -l;

(V^^)' = - V^^, e = -i;

and since each power is obtained by multiplying the one

before it by V— 1, or i, Ave see that the results must now
recur.

273. If a + 6V^^ = 0, then a = 0, and 6 = 0.

For, if a -f- &V^^ = 0,

then &V— 1 = — a

;

.-. ft2_^62 = 0.

Now a^ and ?>^ are both positive, hence their sum cannot

be zero unless each is separately zero ; that is, a = 0, and
6 = 0.

274. If a + 6V^^1 = c + </V^^l, then a = c, and 6 = d.

For, by transposition, a — c + (6 — f?)V— 1 =
;

therefore, by the last article, a — c = 0, and b — d = 0-^

that is, a = c and 6 = d.

Thus in order that two imaginary expressions may be

equal it is necessary and sufficient that the real 2mrts sJiould

be equal, and the imciifmary 2mrts sliould be equal.

The student should carefully note this article and make
use of it as opportunity may offer in the solution of equa-

tions involving imaginary expressions.
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275. When two imaginary expressions differ only in the

sign of the imaginary part, they are said to be conjugate.

Thus a — ?>
V— 1 is conjugate to a -|- &V— 1.

Similarly ^2 + SV^l is conjugate to ^2 — 3V— 1.

276. The sum and the product of two conjugate imaginary

expressions are both real.

For a + bV^^ -{-a — 5V^^ = 2 a.

Again (« + bV~^l)(a - 6V^^) = a^-(- b')= cr + b'.

277. If the denominator of a fraction is of the form

a -\-bV~l, it may be rationalized by multiplying the nu-

merator and the denominator by the conjugate expression

a — 6V— 1. For instance,

c + cW^l ^ (c + (W^^) (a - />V"^T)

a + bV -~1 (a + bV- 1) (a - bV^^)

^ ac + bd + (ad — be) V"^^
a' + b''

__ ac + bd ad — bc^ /
—

j

b'

Thus, by reference to Art. 271, Ave see that the sum, dif-

ference, product, and quotient of tioo imaginary exjjressions is

in each case an imaginary expression of the same form.

278. Fundamental Algebraic Operations upon Imaginary

Quantities.

Ex. 1. Find value of V- «* 4. 5V-9a4 _ 2\/-4a4.

5V~cr^ :=5V9(-<4( _ 1) ^ 15ctV- 1

- 2V-4a-t =- 2\/4'r7H- 1) = - 4ff2V^ri

Ex. 2. Multiply 2V^^ by SV^^.

2V^^ = 2V3\/^=i;;

3\/^^ = 3V2\/^l
;

(2 VS\/^) (3 \/2V^) = 6 V6 (V^ 2^ - 6 V6.
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Ex. 3. Divide 2 + 3V^ by 2 + V^^T.

2 4- 3V^n. _ (2 + 3V^n;)(2 - V"^) _ 7 + 4\/^n; _ 7 + 4\/^
2+V- V31) (-1)(2+V-l)(2

279. The method of Art. 262 may be used in finding

the square root of a + 6 V— 1.

Ex. Find the square root of — 7 — 24 V— 1.

- 7 - 24 V^^=- 7-2 V-144.

We have now to find two quantities whose sum is — 7 and whose
product is — 144 ; these are 9 and — 16

;

hence -7-24 v/^n = 9 + (- 16)-2 V9 x(- 16)

= (V9-V- 16)2;

±(3-4V^no.... V- 7-24 v^^n

EXAMPLES XXIV.
Simplify :

1. VZTs + V^TS. 3. 5\/^l6-2-

2. 4V^^27 + 3V-12. 4. 2V^20 + 3-

5. 2V- a^x^ + 7V- 4 a%2 + 12V- 36 a'^x^.

6. V^-V^+V^+V3T. 9. (2v::2+V^)(V^-V^).
7. (\/^^)(\/-12). 10. (2 + \/^r7^)(3-v^^:^).

8. (2 + V^^)(l - V^3). n. (4: + V^2)(2~SV^^).
12

13

15

16.

17.

(2\/^^ + 3V^^)(4\/^r3 - 5V^2).

, V27-4-V^^. 14. -V^^-CV^^ + V"^).

( _ V3^ + V^2) - (2 v^:=l - V^^)

.

Express with rational denominator

:

^^ + 2-

18.

19.

3V-2 -2V-

5

Find the square root of

20. -5+12\^^^. 21. -

Express in the form a -\- ib:

0.« 'l±li. 9A ^

3+ 2V-I
^

3-2v/^ri

2 - 5\/^T 2 + 5\/^n;

f( + xV— 1 _ g — xV— 1

a — .xV— 1 a + a;V— 1

11_60V-1. 22. -47+8V^

iV2
2 — 3i 2v/3- V^

25.
1+r
1-i'



CHAPTER XXV.

Problems.

280. In previous chapters we have given collections of

problems which lead to simple equations. We add here

a few examples of somewhat greater difficulty.

Ex. 1. A grocer buys 15 lbs. of figs and 28 lbs. of currants for

f 2.G0; by selling the figs at a loss of 10 per cent, and the currants

at a gain of .30 per cent, he clears 30 cents on his outlay : how much
per pound did he pay for each ?

Let x^ y denote the number of cents in the price of a pound of figs

and currants respectively ; then the outlay is

15 X + 28 y cents.

.-. 15x + 28?/ = 260 (1).

The loss upon the figs is — x 15 x cents, and the gain upon the

currants is — x 28?/ cents; therefore the total gain is

^ -Scents;
5 2

... 42l/_3x^3Q .2).
5 2 ^ ^

From (1) and (2) we find that x = 8, and ?/ = 5 ; that is, the figs

cost 8 cents a pound, and the currants cost 5 cents a pound.

Ex. 2. At what time between 4 and 5 o'clock will the minute-hand

of a watch be 13 minutes in advance of the hour-hand ?

Let X denote the required number of minutes after 4 o'clock ; then,

as the minute-hand travels twelve times as fast as the hour-hand, the

hour-hand will move over — minute divisions in x minutes. At 4
12

o'clock the minute-hand is 20 divisions behind the hour-hand, and
finally is 13 divisions in advance ; therefore the minute-hand moves
over 20 -f 13, or 33 divisions more than the hour-hand.

227
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Hence a: = — + 33,
12

Hx = 33;

.-. X = 36.

Thus the time is 36 minutes past 4.

If the question be asked as follows : "At what ^?"mes between 4 and

5 o'clock will there be 13 minutes between the two hands ? " we must

also take into consideration the case when the minute-hand is 13

divisions heMnd the hour-hand. In this case the minute-hand gains

20 — 13, or 7 divisions.

Hence x — -—|- 7,

which gives x = 7/^.

7'
Therefore the times are 7 — past 4, and 36' past 4.

Ex. 3. Two persons A and B start simultaneously from two places,

c miles apart, and walk in the same direction. A travels at the rate of

p miles an hour, and B at the rate of q miles ; how far will A have

walked before he overtakes B ?

Suppose A has walked x miles, then B has walked x — c miles.

A, walking at the rate of p miles an hour, will travel x miles in -

r-c ^
hours ; and B will travel x — c miles in hours : these two times

being equal, we have ^

X _ x — c

p q

qx = px — pc
;

whence x p-q
pc

Therefore A has travelled ~— miles.p-q

Ex. 4. A train travelled a certain distance at a uniform rate. Had
the speed been 6 miles an hour more, the journey would have occupied

4 hours less ; and had the speed been 6 miles an hour less, the journey

would have occupied 6 hours more. Find the distance.

Let the speed of the train be x miles per hour, and let the time

occupied be ?/ hours ; then the distance traversed will be represented

by xy miles.
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On the first supposition the speed per hour is x + 6 miles, and the

time tal?:en is ?/ — 4 hours. In this case tlie distance traversed will be

represented by (x + 6) (?/ — 4) miles.

On the second supposition the distance traversed will be repre-

sented by (x — 6) (?/ + 6) miles.

All these expressions for the distance must be equal

;

.-. xy=(x-^Q)(iy -^) = {x-Q){y + Q).

From these equations we have

xy = xy -\- Qy — 4iX — 2ii,

or 6?/-4ic = 24 (1) ;

and xy = xy — Qy -\- Qx — ZQ,

or Qx-Qy = m (2).

From (1) and (2) we obtain cc = 30, ?/ = 24.

Hence the distance is 720 miles.

Ex. 5. A person invests $ 3770, partly in 3 per cent Bonds at f 102,

and partly in Railway Stock at $ 84 which pays a dividend of 4J pe?

cent ; if his income from these investments is $ 136.25 per annum,
what sum does he invest in each ?

Let x denote the number of dollars invested in Bonds, y the number
of dollars invested in Railway Stock ; then

x + ?/ = 3770 (1).

The income from Bonds is $—^, or $— ; and that from Railway

Stock is $^, or I ?-^.

84 66

Therefore 5. +^ = 136i (2).
34 56

*
^ ^

From (2) x + fi ?/ = 4632 J,

and by subtracting (1) ff ^ = 862^

;

whence y = 28 x 37i = 1050
;

and from (1) x = 2720.

Therefore he invests $ 2720 in Bonds and $ 1050 in Railway Stock.

EXAMPLES XXV.

1. A sum of f 100 is divided among a number of persons ; if the

number had been increased by one-fourth each would have received

a half-dollar less : find the number of persons.
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2. I bought a certain number of marbles at four for a cent ; I

kept one-fifth of them, and sold the rest at three for a cent, and

gained a cent : how many did I buy ?

3. I bought a certain number of articles at five for six cents ; if

they had been eleven for twelve cents, I should have spent six cents

less : how many did I buy ?

4. A man at whist wins twice as much as he had to begin with,

and then loses $ 16 ; he then loses four- fifths of what remained, and

afterwards wins as much as he had at first : how much had he origin-

ally, if he leaves off with 1 80 ?

5. A number of two digits exceeds five times the sum of its digits

by 9, and its ten-digit exceeds its unit-digit by 1 : find it.

6. The sum of the digits of a number less than 100 is G ; if the

digits be reversed the resulting number will be less by 18 than the

original number : find it.

7. A man being asked his age replied, " If you take 2 years from

ray present age the result will be double my wife's age, and 3 years

ago her age was one-third of what mine will be in 12 years." What
were their ages ?

8. At what time between one and two o'clock are the hands of a

watch first at right angles ?

9. At what time between 3 and 4 o'clock is the minute-hand one

minute ahead of the hour-hand ?

10. When are the hands of a clock together between the hours of

6 and 7 ?

11. It is between 2 and 3 o'clock, and in 10 minutes the minute-

hand will be as much before the hour-hand as it is now behind it

:

what is the time ?

12. At an election a majority of 162 was three-elevenths of the

whole number of voters : find the number of votes on each side.

13. A certain number of persons paid a bill ; if there had been 10

more each would have paid $ 2 less ; if there had been 5 less each

would have paid $2.50 more : find the number of persons, and what

each had to pay.

14. A man spends $ 100 in buying two kinds of silk at $4.50 and

$4 a yard ; by selling it at $4.25 per yard he gains 2 per cent : how
much of each did he buy ?

15. Ten years ago the sum of the ages of two sons was one-third of

their father's age: one is two years older than the other, and the

present sum of their ages is fourteen years less than their father's age :

how old are they ?
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16. A basket of oranges is emptied by one person taking half of

them and one more, a second person taking half of the remainder and
one more, and a third person taking half of the remainder and six

more. How many did the basket contain at first ?

17. A person swimming in a stream which runs 1^- miles per hour,

finds that it takes him four times as long to swim a mile up the stream

as it does to swim the same distance down : at what rate does he

swim ?

18. At what tiines between 7 and 8 o'clock will the hands of a

watch be at right angles to each other ? When will they be in the

same straight line ?

19. The denominator of a fraction exceeds the numerator by 4
;

and if 5 is taken from each, the sum of the reciprocal of the new frac-

tion and four times the original fraction is 5 : find the original fraction.

20. Two persons start at noon from towns 60 miles apart. One
walks at the rate of four miles an hour, but stops 2J hours on the

way ; the other walks at the rate of 3 miles an hour without stopping :

when and where will they meet ?

21. A, B, and C travel from the same place at the rates of 4, 5, and
6 miles an hour respectively ; and B starts 2 hours after A. How
long after B must C start in order that they may overtake A at the

same instant ?

22. A dealer bought a horse, expecting to sell it again at a price

that would have given him 10 per cent profit on his purchase ; but he

had to sell it for $ 50 less than he expected, and he then found that he

had lost 15 per cent on what it cost him : what did he pay for the

horse ?

23. A man walking from a town, A, to another, B, at the rate of 4

miles an hour, starts one hour before a coach travelling 12 miles an
hour, and is picked up by the coach. On arriving at B, he finds that

his coach journey has lasted 2 hours : find the distance between A
and B.

24. What is the property of a person whose income is $ 1140, when
one-twelfth of it is invested at 2 per cent, one-half at 3 per cent,

one-third at 4^ per cent, and the remainder pays him no dividend ?

25. A person spends one-third of his income, saves one-fourth, and
pays away 5 per cent on the whole as interest at 7|^ per cent on debts

previously incurred, and then has f 110 remaining: what was the

amount of his debts ?

26. Two vessels contain mixtures of wine and water ; in one there

is three times as much wine as water, in the other five times as much
water as wine. Find how much must be drawn ofl: from each to fill a

third vessel which holds seven gallons, in order that its contents may
be half wine and half water.
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27. There are two mixtures of wine and water, one of which con-

tains twice as much water as wine, and the other three times as much
wine as water. How much must there be taken from each to fill a

pint cup, in which the water and wine shall be equally mixed ?

28. Two men set out at the same time to walk, one from A to B,

and the other from B to A, a distance of a miles. The former walks

at the rate of p miles, and the latter at the rate of q miles an hour: at

what distance from A will they meet ?

29. A train runs from A to B in 3 hours ; a second train runs from
A to C, a point 15 miles beyond B, in 3^ hours, travelling at a speed

which is less by 1 mile per hour. Find distance from A to B.

30. Coffee is bought at 36 cents and chicory at 9 cents per lb. : in

what proportion must they be mixed that 10 per cent may be gained

by selling the mixture at 33 cents per lb. ?

31. A man has one kind of coffee at a cents per pound, and another

at b cents per pound. How much of each must he take to form a

mixture of. a — b lbs., which he can sell at c cents a pound without

loss?

32. A man spends c half-dollars in buying two kinds of silk at a

dimes and b dimes a yard respectively ; he could have bought 3 times

as much of the first and half as much of the second for the same
money. How many yards of each did he buy ?

33. A man rides one-third of the distance from A to B at the rate

of a miles an hour, and the remainder at the rate of 2 6 miles an hour.

If he had travelled at a uniform rate of 3 c miles an hour, he could

have ridden from A to B and back again in the same time. Prove

that - = - + rcab
34. A, B, C are three towns forming a triangle. A man has to

walk from one to the next, ride thence to the next, and drive thence

to his starting-point. He can walk, ride, and drive a mile in «, b, c

minutes respectively. If he starts from B he takes a + c — b hours,

if he starts from C he takes b + a — c hours, and if he starts from A
he takes c + b — a hours. Find the length of the circuit.

MISCELLANEOUS EXAMPLES IV.

1. Distinguish between like and unlike terms. Pick out the like

terms in the expression a^ — S ab -{- b^ — 2 a^ -\- S b'^ -^ o ab -^ 7 a^.

2. Subtract - 2a^ + S a'^b + bb^ - Aab^ from -l-2ab'^ + 3b^

and multiply the result by — l-f2a — &.

3. Divide Sx^-Sx^y -{ 4 xy^ - y^hy 2x- y.
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4. If the number of dollars I possess is represented by + a, what

will — a denote ?

5. Factor the following expressions :

(i.) a2-64,
(ii.) a3 _ 27.

6. Find the value of—^ ^ h
^

x-1 2x-f 3x-l

7. Solve lI^^^-2Jli^ = li±I^+5-6x.
5 3 3

8. There is a number of two digits which when divided by the unit

digit gives a quotient 6 ; but if the digits be inverted the number is

increased by 36 : find the number.

9. Find the H. C. F. of 4 a;3 _ 16 x^ + 13 x - 3

and 3 x3 - 13 x2 + 13 x - 3.

10. Simplify ( V~c^) x ( <f^) x « ~ ^ ^ a
^

'

11. Find the value of 20V| + 14Vf + 2 V2I -1^1 ^V\^ Vj-^.

12. Simplify ^_ X -±- ^ ^.
% X + 1

13. Find the value of fa^ - | (3 & - c) + 62 _ i^
|
_ (f\ when

« = 2, & = 3, c = 4.

14. Solve _i^ + _A_ = _£_.
X — «x + 6x — a

15. Find the L. C. M. of 1 - x, 1 - x2, 1 - x^, and (1 - xf.

16. Solve 3^ +^ = 32,
5 3

2x 2?/_,2
T" 5

" ^•

17. Simplify ^-2/-{2x-|-7-(^-4)+2-^}.

18. Find the square root of x*5 + 8 x^ - 2 x^ + 16 x^ - 8 x + L

19. Solve the equations

(i.) 3£-5 = 21x-f2^ + li5V^^27 V 3 42 y

(ii.) 2f^-lUll + 5i^ =?^-7.
V 3 / 5 15 5

20. Expand the following binomials

:

(i.) (x + 3«)4,

(ii.) (2.-1)1
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21. The sum of the two digits of a number is 8 times their differ-

ence ; if the digits be inverted, the number is diminished by 18 : find

the number.

22. Find the factors of (I) x^-9x - 36, (ii.) 2x2 - 3x - 14, and
(iii.) a^b^ - 7 a%-^x^ -\- xK

23. Rationalize the denominator of —^
:::, and simplify

V13 + 4V3.
'-'^^

24. Simplify
^^ + 3^3 - 11 x^ - 3x + 10.

a:3 + 3x2-6x-8
For what values of x will both numerator and denominator vanish ?

25. Solve the equations

(i.) 2x + Sy + 4z = Sl,

X + 4 ?/ + z = lS,

3x+ y + 2z = 16.

(ii.) ^ +^^ = |,. + ,_6 = |(,-.).

26. Simplify V- 8 + V^r - V- 18 +V- 2 + 2 V- 3.

27. Simplify (^2x - ^1^') (s^/ + ^i±X') -^ (^ + 5 + i^^

/a X \ 1*^

28. Find the middle term of the expansion of - + -
)

•

Vx aj

29. Simplify

«! _ ^ 11
63 a3 b a

(«_^V«+??_i\ i + i + JL
\b a/ \b a J «- b'^ abab

30. Solve the equations

(i.) a(x — a)— b(x — &) = (« + &)(x — « - ?>).

(ii.) (« + 6)x — «// = a'2, («- + 62)x — ahy = a^.

31. A sum of f 10.10 is divided among 7 women and 10 men ; the

same sum could have been divided among 23 women and 4 men. Find

how much each woman and man receives.

32. Find the cube root of 8xC+ 12x5+ 18xH 13x3+ 9x2+ 3x + 1,

12 9^

y y^'

12 9
and the square root of y- -{- i y -\- 10 -\ \-

34. Simplify VsiT- 24 ^6 + [(V^^ + V^3)(\/^^ + 2\/^^)].



CHAPTER XXVI.

Quadratic Equations.

281. Suppose the following problem were proposed for

solution

:

A dealer bought a number of horses for f 280. If he had
bought four less, each would have cost $ 8 more ; how many
did he buy ?

We should proceed thus :

Let X = the number of horses ; then -— = the number of
X

dollars each cost.

If he had bought 4 less, he would have had x — 4, horses,

and each would have cost — dollars.

.-. 8

x-4.

280 280

X a;
-4'

whence x(x — 4)+ 35(x — 4) = 35 x
;

.-. or _ 4a.' + 35 a; -140 = 35 .t;

.-. x:'-Ax = UO.

This equation involves the square of the unknown quan-
tity

;
and in order to complete the solution of the problem

we must discover a method of solving such equations.

282. Definition. An equation which contains the square
of the unknown quantity, but no higher power, is called a

quadratic equation, or an equation of the second degree.

If the equation contains both the square and the first

power of the unknown, it is called an affected quadratic ; if it

235
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contains only the square of the unknown it is said to be a

pure quadratic.

Thus 2x^ — 5x = 3 is an affected quadratic,

and 5 or = 20 is a pure quadratic.

PURE QUADRATIC EQUATIONS.

283. A 2^ure quadratic may be considered as a simple

equation in which the square of the unknown quantity is

to be found.

Ex. Solve —^— = ^^
.

x-2 -27 x2 - 11

Multiplying across, 9 x^ — 99 = 25 a;^ — 675
;

transposing, 16 x"^ = 576
;

.-. x^ = SQ;

and taking the square root of these equals, we have

x=±6.
Note. We prefix the double sign to the number on the right-

hand side for the reason given in Art. 196.

284. In extracting the square root of the two sides of the

equation x^ = 36, it might seem that we ought to prefix the

double sign to the quantities on both sides, and write

±x= ±6. But an examination of the various cases shows

this to be unnecessary. For ± x = ± G gives the four cases

:

-\-x = -\-6, -\-x = — 6, —x = -\-6, — a; = — 6,

and these are all included in the two already given, namely,

.T = 4- G, X = — 6. Hence when we extract the square root

of the two sides of an equation, it is sufficient to put the

double sign before the square root of one side.

EXAMPLES XXVI. a.

Solve the following equations

:

1. 4a;-^+ 5=:x'-^ + 17. ^ 2x^-6 x^-4: 6x'^-10^q
o^-i '2 4 7

3. ix+ l)ix-l) = 2x^-i. a; + 2
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g X — a ^ + « _5
' X -\- a X — a

7 3(a;2-i)
^

4(a;2-4) 3(9x^-1) ^^
x'^ - 1 X- + 3 (x2-l)(x2 + 3)

8. (2 X - c) (x + (0 + (2 X + c) (x - cZ) = 2 c(Z(2 C(Z - 1).

AFFECTED QUADRATIC EQUATIONS.

285. The equation x^ == 36 is an instance of the simplest

form of quadratic equations. The equation (x — 3)^ = 25

may be solved in a similar way ; for taking the square root

of both sideSj we have two simple equations,

x-3 = ±5.

Taking the upper sign, a.* — 3 = + 5, whence .^ = 8

;

taking the lower sign, x — 3 = — 5, whence x = — 2.

.-. the solution is x = 8, or — 2.

Now the given equation (x — Sy = 25

may be written x^ — 6x-{- (3)^ = 25,

or ic^ — () X = 16.

Hence, by retracing our steps, we learn that the equation

x^ ~ 6x = 16

can be solved by first adding (3)^ to each side, and then

extracting the square root ; and we add 9 to each side

because this quantity added to the left side makes it a

l')erfect square.

Now whatever the quantity a may be,

05^ + 2 ax -\- a^ = {x + a)^,

and x^ — 2 ax + a^ = (x — ay

;

so that, if a trinomial is a perfect square, and its highest

power, ocF, has unity for a coefficient, the term without x must

be equal to the square of half the coefficient of x.

Ex. 1. Solve 7 X = x2 - 8.

Transpose so as to have the terms involving x on one side, and the

square term positive.

Thus x2 - 7 X = 8.



238 ALGEBRA.

Completing the square, y? — 7 x + (D" = ^ + V" I

that is, (x - t)2 = V-

;

.-. x= |± § = 8, or - 1.

Note. We do not work out (|)- on the left-hand side.

Ex. 2. Solve 32 -3^2 = 10 a;.

Transposing, 3 a:^ + 10 x = 32.

Divide throughout by 3, so as to make the coefficient of x^ unity.

Thus x^ + V- X - ^f- ;

completing the square, x? + -f x + (f)2 = ^~ + -^g^-
•

that is {x + f)2 = J-fi
;

.-. x=:-f ±-V =2, or -5i.

Ex.3. Solve 7(a;f 2rt)-2 + 3«2 = 5a(7x+ 23o).

Simplifying, 7 a:2 + 28 ax + 28 a^ + 3 ^2 = 35 oja; 4- 115 ^a^

that is, 7 x^ — 7 ax = 84 or.

Whence

completing the square,

tliat is,

X2-
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tion. Thus if jy — 2x -\-l = 0, then {x — 1)^ = 0, whence
X = 1 is the only sohition. Nevertheless, in this and similar

cases we find it convenient to say that the quadratic has two

equal roots.

EXAMPLES XXVI. b.

1. 5x2+14x = 55. 7. 15 = 17x + 4ic2. 13. 21 a;2+22x+5=0.

2. 3 ic2 + 121 = 44 X. 8. 21+x = 2x2. 14. 50a:2 - ISr. = 27.

3. 25x = 6x2 + 21. 9. 9x2-143-6x= 0. 15. 18»:2_27ic-26=:0.

4. 8x2 + x = 30. 10. 12x2 = 29x-14. 16. 5x2 = 8x + 21.

5. 3x2 + 35=22,x. 11. 20x2 = 12 -X. 17. 15x2-2«x = rt2.

6. x+22-6x2=0. 12. 19x = 15-8x2. 18. 21 x2 = 2ax + 3a2,

19. x2 = 11 Jcx + 7 A;2. 23. (x + 1)(2 x + 3) = 4 x2 - 22.

20. 12 x2 4- 23 A:x + 10 ^'2 = 0. 24. (3x-5)(2x-5)=x2+ 2x-3.
21. 12 x2 - ex - 20 c2 zr: 0. 25. a^x^ -2ax + a^ = h.

22. 2(x - 3) = 3(x + 2) (x - 3)

.

26. cc?x2 = c2x + (Px - cd.

2^ 5 X - 1 _ 3

X

gg 5x-7 _ x-5 g^ x+ 4 x-2 _^,
x+1 2' 7x-5 2X-13' x-4 x-3

^'

3x-8_5x-2 ort ^+3 2x-l_Q
32 _^ ^ 1

3

288. Solution by Formula. After suitable reduction and
transposition every quadratic equation can be written in

the form
ax^ -\-hx -\- c = (),

where a, b, c, may have any numerical values whatever. If

therefore we can solve this quadratic, we can solve any.



240 ALGEBRA.

Transposing, aa? -\-hx = — c^ . , » . . . (1)

b c
dividing by a, x^ -\--x =

a a

Completing the square by adding to each side
f
—

]

,

\2aJ

a \2aJ 4a2 a

that IS, Ix-i
2aJ 4.a' '

extracting the square root,

h ±V(^'-4ac)
a.- + 2a 2a '

2a
Note. The student will observe that b, the first term of the

numerator of the fraction, is the coefficient of x in equation (1) loith

its sign changed, and that 4 ac, under the radical, is pZws or minus
according as the signs of a and c in equation (1) are like or unlike.

289. Instead of going through the process of completing

the square in each particular example, we may now make
use of this general formula, adapting it to the case in

question by substituting the values of a, b, c.

Ex. Solve 5x2 + 11 x - 12 = 0.

Here a = 5, & = 11, c = - 12.

.
-ll±V(ll)2-4.5(-12)

..X-
^^

_ -ll J=V361 -11±10 _4 ^^._3
10 ~ 10

~5'

290. In the result x = -b±Vf-^''')
,

2 a
it must be remembered that the expression y/(b^ — 4:ac) is

the square root of the compound quantity b^ — 4 ac, taken as

a ivhole. We cannot simplify the solution unless we know
the numerical values of a, b, c. It may sometimes happen
that these values do not make b~ — 4 ac a perfect square. In

such a case the exact numerical solution of the equation

cannot be determined.
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Ex.1. Solve 5x2- 15x + 11 =0.

We have 15 ± V^C- 15)^ - 4 . 5 . 11^"
2.5

^ 15±V5 .

10

Now V^ = 2.236 approximately.

15 ± 2.236 ^ -^.,^3^ ^^, ^2764.
10

These solutions are correct only to four places of decimals, and

neither of them will be found to exactly satisfy the equation.

Unless the numerical values of the unknow^n quantity are required

it is usual to leave the roots in the form

15 + V5 15 - V5
10 ' 10 "

Ex. 2. Solve x2 - 3 X + 5 = 0.

We have ^ ^ 3 ± V(- 3)^ - 4 1 . 5

^ 3 ^ V9 _ 20 ^ 3 :jz V^^TT
2 2

But — 11 has no square root exact or approximate [Art. 196]; so

that no real value of x can be found to satisfy the equation. In such

a case the roots are said to be imaginary or impossible [Art. 266].

291. Solution by Factoring. The following method will

sometimes be found shorter than either of those already

given.

Consider the equation x^ -\-^x = 2.

Clearing of fractions, 3x^-\-7x — 6 = . . . . (1)

;

by resolving the left-hand side into factors, we have

(3i^-2)(a; + 3) = 0.

Now if either of the factors 3 ic — 2, a; + 3, be zero, their

product is zero. Hence the quadratic equation is satisfied

by either of the suppositions

3 a; - 2 = 0, or iK + 3 = 0.

Thus the roots are |, — 3.

From this we see that ivhen a quadratic equation has been

simplified and brought to the form of equation (1), its solution

can be readily obtained if the expression on the left-hand
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side can be resolved into factors. Each of these factors

equated to zero gives a simple equation, and a correspond-

ing root of the quadratic.

Ex. 1. Solve 2x'^ - ax-^2bx = ah.

Transposing, so as to have all the terms on one side of the equation^

we have
2 x'2 — ax -\-2hx — ah = 0.

Now 2x'^ — ax + 2hx — ah = x{2 x - «) + 6(2 x — a)

= (2x-a)(x + h).

Therefore (2 x - a) (x + 6) = ;

whence 2x-a = 0, orx + 6 = 0.

.-. X =-, or -h.
2

Ex. 2. Solve 2(x2 - 6) = 3(x - 4).

We have 2 x2 - 12 = 3x - 12
;

that is, 2x2= 3x • . (1)

Transposing, 2 x^ - 3 x = 0.

X(2X-3)z:iO.

.-. x=:0, or 2x- 3 = 0.

Thus the roots are 0, |

.

Note. In equation (1) above we might have divided both sides

by X and obtained the simple equation 2 x = 3, whence x = |, which

is one of the solutions of the given equation. But the student must

be particularly careful to notice that whenever an x is removed by

division from every term of an equation it must not he neglected^

since the eqiiation is satisfied hij x = 0, v^hich is therefore one of the

roots.

292. Formation of Equations with Given Roots.

It is now easy to form an efiuation whose roots are known.

Ex. Form the equation whose roots are 3 and },.

Here x = 3, or x = ^ ;

.-. a: -3 = 0, or x - ^ =6;
both of these statements are included in

(x-3)(x-.\)=0,
or 2 x2 - 7 X + 3 = 0.

From this it also appears that the factors of a trinomial, in the form

ax2 + bx + c, can be obtained by placing the expression equal to zero,

solving the resulting quadratic equation (Art. 288), and subtracting

each root separately from x. We .shall return to the subject of this

article in Chapter xxx.
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293. Values found for the Unknown Quantity which do not

satisfy the Original Equation.

From tlie following example it will be seen that in solv-

ing certain equations values may be obtained which will

not satisfy the original equation.

Ex. Solve \/x + 5 + V3x + 4 = Vl2x+ 1.

Squaring both sides,

a: + 5 + 3x + 4 + 2V(x + 5)(3x + 4)= 12r. + 1,

Transposing and dividing by 2,

\/{x + 5) (3 a; + 4) =4 a; -4 (1).

Squaring, {x + 5) (3 x + 4) := 16 xP- - 32 x + 16,

or 13x2 -51a: -4 = 0,

(x-4)(13x + l) = 0;

.-. X = 4, or — Jg.

If we proceed to verify the solution by substituting these values in

the original equation, it will be found that it is satisfied by x = 4, but

not by X = — -^^. But this latter value will be found on trial to satisfy

the given equation if we alter the sign of the second radical ; thus,

VX+ 5 - V3x+4 = Vl2x+ 1.

On squaring this and reducing, we obtain

-V(x + 5)(3x + 4) = 4x-4 (2);

and a comparison of (1) and (2) shows that in the next stage of the

work the same quadratic equation is obtained in each case, the roots

of which are 4 and — Jg, as already found.

From this it appears that when the solution of an equation requires

that both sides should be squared, we cannot be certain without trial

which of the values found for the unknown quantity will satisfy the

original equation.

In order that all the values found by the solution of the equation

may be applicable, it will be necessary to take into account both signs

of the radicals in the given equation.

EXAMPLES XXVI. c.

Solve by the aid of the formula in Art. 288 :

1.
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Solve by resolution into factors :

13. 6x2 = 7 + x. 17. 4x2 = T-4^x + 3. 21. 25x2 = 5x + 6.

14. 2H-8x2=:26x. 18. x2-2 = f|x. 22. 35-4x = 4x2.

15. 26x-21 + llx2=0. 19. 7x2 = 28-96x. 23. 12x2-nax=36a2.

16. 5x2+26x4-24=0. 20. 96x2 = 4x + 15. 24. 12x2 4-36a2=43ax.

25. 35 h'^ = 9x^ + 6 hx. 28. x2 - 2 ax + 8 x = 16 a.

26. 36 x2 - 35 62 = 12 hx. 29. 3 x2 - 2 ax - 6x = 0.

27. x2 - 2 ax + 4 a& = 2 hx. 30. ax- + 2 x = &x.

Solve :

31. J^ +^ = l(x+5).'
X + 4 11 3

\/3 X + 10 + Vx + 2 = VIO X + 16.

33.
3 X - 4 _ X - 1

I 1 _ ^^- >/2x+ 6 - Vx + 4 = Vx - 4.

x+1 3x+4 2 ' 11^;
r 72 37 1

,

1 ^ « + ?>

34. 6x2 - -li^ = cZx - cx2.
^'-

« + a;"^6 + x a6 '

h + c

35. x2 + 2 ex - 2 dx = 2 cd - fR 38. 2 cx2+ 2 fr2(x+c) = dx(x+5c).

„g X + m , X — ??? _ x2 4- j»2 x2 — m'~

'

X — m X + ?i?. x2 — ?}i2 x2 + m'^

40. 1
,
=^ + Ul.

x+a4-6 h a x

41. VxTf + V3 X + ^ = V6 X + |.

42. Vx + 3 + V2x+ 1 =2V3x- 1.

43
^-2 3x- 11 ^ 4x+ 13

'x-3 x-4 x+1

44 ^ ~ ^^
-1

^^^ ~ ^^ _ ^' + w — 2 n
" 2 «i + X 2 ^• + X A^ + 7>i + X

45. (a - 6)x2 + (6 - c)x + c - a = 0.

46. a(6 -c)x2+ 6(c-a)x + c(a- 6) = 0.

47. Va -X + V6 - X = Va + 6 - 2 X.

48. -^+^ = ^-+ 1

a — X 6 — X a — c h — c

P , Q
49. Vx -p + Vx - g = +

Vx — (7 Vx

50. V(x-2)(x-3)+5^^|^^= Vx2 + 6x + 8.



CHAPTER XXVII.

Equations in Quadratic Form.

294. An equation in the form a.r^" + bx'' = c, n being a

positive or negative integer or fraction, is in quadratic form.

Thus ^^ + 4 x^ = 117, x'^ + 7 x'^ = 44, and x~'^ -\- x'i = a are

equations in quadratic form.

We give a few examples showing that the ordinary rules

for quadratic equations are applicable to those in quadratic

form.

Ex. 1. Solve a:* - ISx^ = - 36.

By formula [Art. 288] . x^
18±\/(13)2
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EXAMPLES XXVII. a.

1. .r4- 13x2 +36 = 0.

2. x6 + 7 x3 = 8.

3. x^- 19x3 = 216.

4. 8x6 + 65x3+ 8=0.

5. 3V»^-3x"^ = 8.

6. 27 x^ - 1 = 26 xi

7. x4-74x2 = - 1225.

8. x-2-2x-i = 8.

10.
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Squaring and solving the resulting quadratics, we obtain from the

first X = G or — 1 ; and from the second x = ~-—'— The first

pair of values satisfies the given equation, but the second pair satisfies

the equation

a;2 -5x-2Va:2-6x + 3 = 12.

Ex. 2. Solve 3x2 - 7 + SVSx'^ - 16x + 21 = Wx.

Transposing, 3 ^2 - 16 x - 7 + 3V3 x^ - 16 x + 21 = 0.

Add 28 to each side ; then

3x2 - 16 x + 21 + 3V3x2- 16X + 21 = 28.

Proceeding as in Ex. 1, we have

y^ -{- Sy = 2S ] whence ?/ = 4 or — 7.

Thus \/3x2- 16X + 21 = 4 or \/3x2- 16x + 21 = - 7.

Squaring and solving, we obtain

. = 6,l,or«±|yil.

The values 5 and i satisfy the original equation. The other values

satisfy the equation

3x2-7 -3\/3x2- 16x4-21 = 16x.

296. Occasionally equations of the fourth degree may be

arranged in expressions that will be in quadratic form.

Ex. Solve x* - 8 x3 + 10 x2 + 24 X + 5 = 0.

This may be written x* — 8x^ + 16 x- — 6 x2 + 24 x = — 5,

or (x2 — 4x)2 — 6(x2 — 4x) = — 5
;

, r T A 6 ± V36 - 20 6 ± 4 . ,
by formula, x2 — 4 x = —^ = ^ = 5 or 1

;•^ '

2 2'
whence x = 5, — 1, or 2 ± V5.

The student will notice that in such examples he should

divide the term containing oy^ by twice the square root of

the first term and then square the result for the third term.

In this case a third term of 16 x'^ is required, therefore we
write the term 10 a;- of the original equation in the form
16 0.*^ — 6x-.

297. Equations like the following are of frequent occur-

rence.
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Ex. Solve ^!ll^+ ^^
x'^-6

Write y for ——-
; thus

y + ^ = Q, or 2/2_6?/ + 5 =

whence y = ^i or 1.

a; X

that is, a:2 - 5 X - 6 =: 0, or a;2 _ .^ _ G = 0.

Thus x=6, - 1 ; or a: = 3, - 2.

EXAMPLES XXVII. b.

Solve the following equations :

42
1. a;2 + a; + 1 = • 5. ^2 + 2 Va;--^ + G :c = 24 - 6 a;.

a:- + X

a7 X

3.

(-^r-(-^)
4 a^'^-S 3 a;

^)--



CHAPTER XXVIII.

Simultaneous Equations, Involving Quadratics.

298. We shall now consider some of the most useful

methods of solving simultaneous equations, one or more of

which may be of a degree higher than the first ; but no fixed

rules can be laid down which are applicable to all cases.

299. Equations solved by finding the Values of (x +/) and

Ex.1. Solve x + ij = 16 (1),

xy = S6 (2).

From (1) by squaring, oc^ -\- 2 xy -\- ij^ = 225
;

from (2), 4iXy = 144
;

by subtraction, x"^ —2 xy. -\- y^ = 81;

by taking the square root, x — y = ±9.

Combining this with (1) we have to consider the two cases,

x + y = l5,l x + y= 16,\

x — y = 9. / X — y = — 9. i

from which we find x = 12, \ x= S,\

y = o. i y = l2J

Ex.2. Solve x-y = 12 (1),

xy = 8b (2).

From (1), x^-2xy + y'^ = 144
;

from (2), ^xy = SiO;

by addition, x^ -{• 2xy -{ y'^ = 484
;

by taking the square root, x -]- y = ± 22.

Combining this with (1) we have the two cases.

x + y = 22,}^ x + y = -22,^

x-y = 12J x-y= 12. /

a; = 17,

y= 5.

Wlience a; = 17, ) x = — 5, \
i y=-nJ
249
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300. These are the simplest cases that arisfe, but they
are sj^ecially important since the solution in a large number
of other cases is dependent upon them.

As a rule our object is to solve the proposed equations

symmetricaUfj, by finding the values of x -\- y and x — y.

From the foregoing examples it will be seen that we can
always do this as soon as we have obtained the product of

the unknowns, and either their sum or their difference.

Ex.1. Solve a:2 + //2^74 (1),

xy = Srj (2).

Multiply (2) by 2, then by addition and subtraction we have

^2
-f 2 a;y + ?/2 _ 144,

a-2 -2xy + i/= 4.

Whence x + y = ± 12,

X — y=± 2.

We have now four cases to consider ; namely,

x + y = 12,-) x + y= 12, | x+y = -V2,\ a- + ?/ = - 12,
|x-y= 2.) x-y = --2.l x-y= 2.) x - y = - 2. )

From which the values of x are 7, 5, — 5, — 7
;

and the corresponding values of y are 5, 7, — 7, — 5.

Ex.2. Solve a:2 + ^- = 185. . . (1),

x + y=n (2).

By subtracting (1) from the square of (2) we have

2 xy = 104
;

.'. xy = 62 (8).

Equations (2) and (3) can now be solved by the method of Art. 299,

Ex. 1 ; and the solution is

X = 13, or 4, \
?/ = 4, or 13. J

EXAMPLES XXVIII. a.

Solve the following equations :

1. x + y = 2S, Z. x + y = 74, 5. x-y = S,

xy=lSl. .<V/=1113. :/•?/ = 513.

2. X + ?/ = 51, 4. X - y = 5, 6. xy = 1075,

xy = 518. xy = 126. x - y = IS.



x + y = 2.

1 + 1-1
X y 12

xy = 12.
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7. xy = 92S, 15. a;2 + ^/^ = 65, 23. a: - ?/ = 3,

.x + y = Si. xy=2S. x^ - S xy -{-
y^ = - 19.

8. ft; - ?/ = - 8, 16. x'^ + w'^ = 178, nA o , •? ^/.

xy = 1353. X + ?/ = 16.
^

X + V = 14.
9. :c-?/=-22, 17. x+?/ = 15,

^^

x?/ = 3848. x2 + ?/2 = 125. 25. yV(^ -!/)=!,

10. xy=-219S, 18. x - ?/ = 4, a:2-4xj/+y2= 52.

x + ?/ = -8. x2 + 2/-2 = 106. 1 1

26. - + - = 2,
11. x-v/ = -18, 19. x2 + y2^180, x^

x?/ = 1363. x-y =6.

12. a;y = - 1914, 20. x2 + if- = 185,

X + ?/ = — 65. X — ^ = 3. 27.

13. x2 + 2/2 = 89, 21. X + ?/ = 13,

x?/ = 40. x2 + ^2 = 97.

14. x2 + ?/2 = 170, 22. X + 2/ = 9,
28. wx +by = 2,

xy = 13. x2 + xy + y''— 61. a^x^ = 1.

29. x2 +^x?/ + 2/2 =i> + 2,

gx2 + x?/ + <?2/2_2g + 1.

301. Equations which can he reduced to One of the Cases

already considered. Any pair of equations of the form

X- ± pxy -\-y^ = a^ (1),

x±y = b (2),

where p is any numerical quantity, can be reduced to one of

the cases already considered ; for, by squaring (2) and com-

bining with (1), an equation to find xy is obtained; the solu-

tion can then be completed by the aid of equation (2).

Ex.1. Solve x3-?/3 = 999 (1),

x-y = 3 (2).

By division, x^ -\- xy + y- = 333 (3);

from (2), x2 - 2 X2/ + ?/ = 9
;

by subtraction, 3xy = 324,

xy = 10S (4).

From (2) and (4),
^ = 1^' °^' " ^'

y = 9, or — 12.
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Ex. 2. Solve x"^ + x^-y^ + ?/ = 2G13 (1),

x2 + a:?/ + 2/2 = 67 (2).

Dividing (1) by (2), a;-2-a;^ + 2/2 = 39 (3).

From (2) and (3), by addition, x- + ?/2 = 53
;

by subtraction, xy = 14:;

wlience
x=±7, ±2,\ r-j^^^^

^^^ Ex. 1.]
y = ±2, ±7.i •-

Ex. 3. Solve
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11 1 , 1 _ 481

x2'^2/2 576'
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The student will notice that, having found the values of

X, we obtained those of y from the equation y = mx, using,

in each case, the value of m employed in finding those par-

ticular values of x.

303. Equations of which One is of the First Degree and the

Other of a Higher Degree. We may from the simple equa-

tion find the value of one of the unknowns in terms of the

other, and substitute in the second equation.

Ex. Solve 3:i:-4y = 5 (1),

Zx'^-xy -oif = 2\ (2).

From (1) we have x = ^ "^ •'

;

o

and substituting in (2), ^il+M! _y^^M _ 3 ,^ = 21
;

. •. 75 + 120 ?/ + 48 2/2 - 15 ?/ - 12 ?/2 - 27 </2 = 189
;

9?/2+ 105?/- 114=0;

3 ?/2 + 35 ?/ - 38 = ;

.'. (2/-l)(32/ + 38)=0;

.-. ?/ = i, or -^v-;

and by substituting in (1), cc = 3, or — i|^.

304. Symmetrical Equations. The following method of

solution may always be used when the given equations are

symmetrical, that is, when the unknown quantities in each

equation may be interchanged Avithout destroying the

equality. The same method may generally be employed

with advantage where the given equations are symmetrical

except with respect to the signs of the terms.

Ex. Solve x^ + y^ = S2 (1),

x-y = 2 (2).

Put x = u + V, and y = u — v;

then from (2) we obtain v = 1.

Substituting in (1), {u + 1)* + {u - 1)* = 82
;

.-. 2(1*4 + 0^2 + 1) =82;

n^ + ?(2 _ 40 = ;
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whence u^ = 4, or — 10
;

and w = ± 2, or ± V— 10.

Thus, x=u-{-v = S, -1, 1±V3k);
7j = u~v = l, -3, - liV- 10.

Note. We may assume x + y = 2u and x — y = 2v, u and v be-

ing ««?/ unknown quantities, whence we obtain x= u -\- v^ and
y =z u — V, the values used in the above.

305. Miscellaneous Cases. The examples we have given

will be sufficient as a general explanation of the methods
to be employed; but in some cases special artifices are

necessary.

Ex.1. Solve xhj"-Qx=S4:-Sy (1),

Sxy + y = 2(9+x) (2).

From (1), xV _6x + 3?/ = 34;

from (2)

,

Qxy -6x-h 3 y = 54
;

by subtraction, xhj^ — 9xy=z- 20,

9±vsrEM=l±l = ,ov^.^2 2

(i.) Substituting xy = 5 in (2) gives y — 2x = 3.

From these equations we obtain x = 1, or — f , 1

y = 5, or — 2. /

(ii.) Substituting xy = 4: in (2) gives y — 2 x = 6.

From these equations we obtain x = ——^^—
and y = S ±^lv/17. J

Ex.2. Solve ?/ + 2/^ 4- ^2 ^ 49 (1)^

^2
-f ^.x + x2 = 19 (2),

x2 + x?/ + ?/2 = 39 (3).

Subtracting (2) from (1),

y2 _r^2^ ^^y _x)=30;
that is, (y -x)(x + y

-\- z) = SO (4).

Similarly from (1) and (3),

{z~x')(x-\-y + z)=lO ....... (5).
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^ Hence from (4) and (5), by division,

z — X

whence y = ?jz — 1x.

Substituting inequation (3), we obtain

x2- 3x2 + 3^2 = 13.

From (2), a:^ j^ xz ^ z"- = 10.

Solving these homogeneous equations, we obtain

x = ±2, ^ = ±3; and therefore y = ± 5
;

or X = ± , z =.± ; and therefore y = ^
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31.



CHAPTER XXIX.

Problems leading to Quadratic Equations.

306. We shall now discuss some problems which give

rise to quadratic equations.

Ex. 1. A train travels 300 miles at a uniform rate ; if the rate had

been 5 miles an hour more, the journey would have taken two hours

less : find the rate of the train.

Suppose the train travels at the rate of x miles per hour, then the

. ^ . 300 ^
time occupied is — hours.

^' 300
On the other supposition the time is

^ ^
hours

;

... ^00_^300_2 (1).
a- -f 5 X

whence x2 + 5 x - 750 = 0,

or (x + 30) (x - 25) = 0,

.-. x = 25, or -30.

Hence the train travels 25 miles per hour, the negative value being

inadmissible.

It will frequently happen that the algebraic statement of the ques-

tion leads to a result which does not apply to the actual problem

we are discussing. But such results can sometimes be explained by

a suitable modification of the conditions of the question. In the

present case we may explain the negative solution as follows :

Since the values x = 25 and —30 satisfy the equation (1), if we

write — X for x, the resulting equation,

_J00_^300_2 ^2),— x+ 5 — X

will be satisfied by the values x = - 25 and 30. Now, by changing

signs throughout, equation (2) becomes -—- = '^
1- 2

;

and this is the algebraic statement of the following question :

A train travels 300 miles at a uniform rate ; if the rate had been

5 miles an hour less, the journey would have taken two hours more ;

find the rate of the train. The rate is 30 miles an hour.

258
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Ex. 2. A person, selling a horse for $72, finds that his loss per
cent is one-eighth of the number of dollars that he paid for the horse :

what was the cost price ?

Suppose that the cost price of the horse is x dollars ; then the loss

on $100 is $-.

Hence the loss on $x is x x -^, or -^ dollars

;

800 800
'

.
•

. the selling price is x — dollars.
""

800

Hence x -— = 72,
800

or x2 - 800x + 57600 = ;

that is, (x - 80) (x - 720) = ;

.
•

. X = 80, or 720
;

and each of these values will be found to satisfy the conditions of the

problem. Thus the cost is either $ 80, or $ 720.

Ex. 3. A cistern can be filled by two pipes in 33i minutes ; if the

larger pipe takes 15 minutes less than the smaller to fill the cistern,

find in what time it will be filled by each pipe singly.

Suppose that the two pipes running singly would fill the cistern

in X and x — 15 minutes. When running together they will fill

- H ) of the cistern in one minute. But they fill— , or -—
X x-15/ -^ 33i 100

of the cistern in one minute ; hence

X x-15 100

'

100(2x-15) = 3x(x-15),

3x2-245x-f 1500 = 0,

(x-75)(3x-20)=0;
.-. x = 75, or 6f.

Thus the smaller pipe takes 75 minutes, the larger 60 minutes.

The other solution, 6f , is inadmissible.

Ex. 4. The small wheel of a bicycle makes 135 revolutions more
than the large wheel in a distance of 260 yards ; if the circumference

of each were one foot more, the small wheel would make 27 revolu-

tions more than the large wheel in a distance of 70 yards: find the

circumference of each wheel.
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Suppose the small wheel to be x feet, and the large wheel y feet in

circumference.
780 780

In a distance of 260 yards, the two wheels make— and— revo-

lutions respectively.

Hence Z80_I82=135,
a; y

119

X y

X y 52 ^
^*

Similarly, from the second condition, we obtain

210 210
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Hence we have the following equations

:

^+^ = 5 (1),
X y + z

12 + -t^ = 7 (2),
oc y - z

— +-=5f (3).

From (1) and (3), by subtraction, ^ = — . . . . (4).

y y + z 18

Similarly, from (2) and (3), —^ 1 = - .... (5).y-z y 9

From (4) 18 z = y(y + z) (6);

and from (5) 9 z = y(y — z) (7).

From (6) and (7), by division, 2 = ^^-i^

;

y-z
whence y = o z;

.'. from (4) z = 11', and hence ?/ = 4|, x = 4.

Thus the rates of walking and rowing are 4 miles and 4^ miles per

hour respectively; and the stream flows at the rate of 1^ miles per

hour.

EXAMPLES XXIX.

1. Find a number whose square diminished by 119 is equal to ten

times the excess of the number over 8.

2. A man is five times as old as his son, and the sum of tlie squares

of their ages is equal to 2106 : find their ages.

3. The sum of tlie reciprocals of two consecutive numbers is ^f

:

find them.

4. Find a number which when increased by 17 is equal to 60 times

the reciprocal of the number.

5. Find two numbers whose sum is 9 times their difference, and
the difference of whose squares is 81.

6. The sum of a number and its square is nine times the next
higher number : find it.

7. If a train travelled 5 miles an hour faster, it would take one
hour less to travel 210 miles : what time does it take ?

8. Find two numbers the sum of whose squares is 74, and whose
sum is 12.

9. The perimeter of a rectangular field is 500 yards, and its area
is 14400 square yards : find the length of the sides.
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10. The perimeter of one square exceeds that of another by 100

feet ; and the area of the larger square exceeds three times the area

of the smaller by 325 square feet : find the length of their sides.

11. A cistern can be filled by two pipes running together in 22i

minutes ; the larger pipe would fill the cistern in 24 minutes less than

the smaller one : find the time taken by each.

12. A man travels 108 miles, and finds that he could have made
the journey in 4| hours less had he travelled 2 miles an hour faster

:

at what rate did he travel ?

13. I buy a number of foot-balls for $ 100 ; had they cost a dollar

apiece less, I should have had five more for the money : find the cost

of each.

14. A boy was sent for 40 cents' worth of eggs. He broke 4 on his

way home, and the cost therefore was at the rate of 3 cents more
than the market price for 6. How many did he buy ?

15. What are the two parts of 20 whose product is equal to 24

times their difference ?

16. A lawn 50 feet long and 34 feet broad has a path of uniform

width round it ; if the area of the path is 540 square feet, find its

width.

17. A hall can be paved with 200 square tiles of a certain size ; if

each tile were one inch longer each way it would take 128 tiles : find

the length of each tile.

18. In the centre of a square garden is a square lawn ; outside this

is a gravel walk 4 feet wide, and then a flower border 6 feet wide. If

the flower border and lawn together contain 721 square feet, find the

area of the lawn.

19. By lowering the price of apples and selling them one cent a

dozen cheaper, an applewoman finds that she can sell 60 more than

she used to do for 60 cents. At what price per dozen did she sell

them at first ?

20. Two rectangles contain the same area, 480 square yards. The
difference of their lengths is 10 yards, and of their breadths 4 yards

:

find their sides.

21. There is a number between 10 and 100 ; when multiplied by

the digit on the left the product is 280 ; if the sum of the digits be

multiplied by the same digit, the product is 55 : find it.

22. A farmer having sold, at $75 each, horses which cost him x

dollars apiece, finds that he has realized x per cent profit on his

outlay : find x.

23. If a carriage wheel 14f ft. in circumference takes one second

more to revolve, the rate of the carriage per hour will be 2| miles less

:

how fast is the carriage travelling ?
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24. A merchant bought a number of yards of cloth for $ 100 ; he

kept 5 yards and sold the rest at $ 2 per yard more than he gave, and

received $ 20 more than he originally spent : how many yards did he

buy?

25. A broker bought as many shares of stock as cost him $ 1875
;

he reserved 15, and sold the remainder for $ 1740, gaining $4 a share

on their cost price. How many shares did he buy ?

26. A and B are two stations 300 miles apart. Two trains start

simultaneously from A and B, each to the opposite station. The
train from A reaches B nine hours, the train from B reaches A four

hours after they meet : find the rate at which each train travels.

27. A train A starts to go from P to Q, two stations 240 miles

apart, and travels uniformly. An hour later another train B starts

from P, and after travelling for 2 hours, comes to a point that A had

passed 45 minutes previously. The pace of B is now increased by 5

miles an hour, and it overtakes A just on entering Q. Find the rates

at which they started.

28. A cask P is filled with 50 gallons of water, and a cask Q with

40 gallons of brandy ; x gallons are drawn from each cask, mixed and

replaced ; and the same operation is repeated. Find x when there are

8 1 gallons of brandy in P after the second replacement.

29. Two farmers A and B have 30 cows between them ; they sell

at different prices, but each receives the same sum. If A had sold

his at B's price, he would have received $320 ; and if B had sold his

at A's price, he would have received $ 245. How many had each ?

30. A man arrives at the railroad station nearest to his house \\

hours before the time at which he had ordered his carriage to meet

him. He sets out at once to walk at the rate of 4 miles an hour, and,

meeting his carriage when it had travelled 8 miles, reaches home
exactly 1 hour earlier than he had originally expected. How far

is his house from the station, and at what rate was his carriage

driven ?



CHAPTER XXX.

Theory of Quadratic Equations.

MISCELLANEOUS THEOREMS.

307. In Chapter xxvi. it was shown that after suitable

reduction every quadratic equation may be written in the

form
ax^-^bx-\-c = (1),

and that the solution of the equation is

^^ -b±Vb''~^ac
^2).

We shall now prove some important propositions con-

nected with the roots and coefficients of all equations of

which (1) is the type.

NUMBER OF THE ROOTS.

308. A quadratic equation cannot have more than two roots.

For, if possible, let the equation ax~ -\- bx -{- c = have

three different roots 7'i, r^, r^. Then since each of these

values must satisfy the equation, we have

ari2 + 6ri + c = (1),

ari + hr,-\-c = (2),

ari+br^ + c = (3).

From (1) and (2), by subtraction,

divide out by ri — r^, which, by hypothesis, is not zero

;

then

aOW i\)+b = 0,

264
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Similarly from (2) and (3),

.-. by siibtra.ction, a(7\ — ^3)= ;

which is impossible, since, by hypothesis, a is not zero, and

Ti is not equal to ?v Hence there cannot be three different

roots.

309. The terms 'unreal,' 'imaginary,' and 'impossible'

are all used in the same sense; namely, to denote expres-

sions which involve the square root of a negative quantity,

such as

V— 1, V— 3, V— a.

It is important that the student should clearly distinguish

between the terms real and rational, imaginary and irra-

tional. Thus -^25 or 5, 3i, — |- are rational and real; -yjl

is irrational but real; while V— 7 is irrational and also

imaginary.

CHARACTER OF THE ROOTS.

310. In Art. 307 denote the two roots in (2) by r^ and r^y

-b-\--Vb^-4.ac -6-V6'-4ac
2 a 2 a

then we have the following results :

(1) If 6-— 4 ac, the quantity under the radical, is positive,

the roots are real and unequal.

(2) If 6^ — 4 ac is zero, the roots are real and equal, each

reducing in this case to
2 a

(3) If b^ — 4: ac is negative, the roots are imaginary and

unequal.

(4) If 6^—4 ac is a x>erfect square, the roots are rational

and unequal.

By ap]3lying these tests the nature of the roots of any

quadratic may be determined without solving the equation.
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Ex. 1. Show that the equation 2 x-—G a:+7= cannot be satisfied

by any real values of x.

Here a = 2, 6 = - 6, c = 7 ; so that

6'-2 - 4 «c =(- 0)-^ - 4 . 2 . 7 = - 20.

Therefore the roots are imaginary.

Ex. 2. For what value of k will the equation 3 x- — G :c + Jc =
have equal roots ?

The condition for equal roots gives

(_6)•2-4.3.^' = 0,

wiience k = 3.

Ex. 3. Show that the roots of the equation

x^-2ax-h cfi - 62 + 2 &c - c2 = are rational.

The roots will be rational provided (— 2 a)2— 4 («2_ 52^2 &c— c2)

is a perfect square. But this expression reduces to 4(6^ _ 2 6c + c'-)

or 4(6 — c)2. Hence the roots are rational.

RELATIONS OF ROOTS AND COEFFICIENTS.

311. Since
,^^-h+VW^^c^

,, = r±^VF^I^-
2 a 2 rt

we have by addition

_ — h+ Vb^ — 4 ac — & — Vb' — 4 ac _ b ...

2 a a

and by multiplication we have

*'''
4(r

beBy writing the equation in the form x^-^-x-\—=0, these
a a

results may also be expressed as follows

:

In a quadratic equation 2vhere the coeffieient of the first term

is unity,

(i.) the sum of the roots is equal to the coefficient of x

with its sign changed
;

(ii.) the product of the roots is equal to the third term.

Note. In any equation the term which does not contain the

unknown quantity is frequently called the absolute term.
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FORMATION OF EQUATIONS WITH GIVEN ROOTS.

312. Since — - = ^i + r^, and - = 7\r2,

ft ft

the equation x^ -\- - x -\-- may be written

a'2-(-ri + r2).r + ?Y/-2
= (1).

Hence any quadratic may also be expressed in the form

x^ — (sum of roots) x + product of roots = . (2).

Again, from (1) we have

(x-n)(:x-r.;) = (3).

We may now form an equation with given roots.

Ex. 1. Form the equation whose roots are 3 and — 2.

The equation is (x - 3) (x + 2) = 0,

or x'^ — X — Q = 0.

Ex. 2. Form the equation whose roots are f and — f

.

The equation is (x — f) (x + |) = ;

that is, (7x-3)(5a; + 4)=0,

or 35x2+13x-12=:0.

When the roots are irrational it is easier to use the following

method.

Ex. 3. Form the equation whose roots are 2 + V^ and 2 - y/S.

We have sum of roots = 4,

product of roots = 1

;

.-. the equation is oc^ — 4:X + 1 =0,

by using formula (2) of the present article.

313. The results of Art. 311 are most important, and they

are generally sufficient to solve problems connected with

the roots of quadratics. In such questions the roots should

never he considered singly, but use should be made of the

relations obtained by writing down the sum of the roots,

and their product; in terms of the coefficients of the equation.
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Ex. 1, If a and b are the roots of x'^ — px -{- q = 0, find the value

of (1) a2 ^ 1,2^ (2) a^ + 63.

We have a -{- b =p,
ab — q.

.'. a^ + b^ ={a -\- by- 2 ab = p'^ - 2 q.

Again, a^ -\-b^ = (a + b) (a^ + 6^ _ ab)

= P{(« + by - 3«&} =p{p'^ - 3^).

Ex. 2. If a, b are the roots of the equation Ix;^ + mx + >i = 0, find

the equation whose roots are -, —
b a

We have sum of roots = ^-\-^ = ^!±-^,
b a ab

product of roots = ? x - = 1

;

b a

.-.by Art. 312 the required equation is

'\x-hl=0^._,«^+^-
ab

or abx^ - (a^ + b^)x -\- ab = 0.

As in the last example a^ + 6^ = V^^zl^^ and ab =-,
P I

.'. the equation is ^ x^ - ^^^^ ~ ^ ^^^
^ + - = 0,

or nlx^ — (m^ — 2 nl)x + nl = 0.

Ex. 3. Find the condition that the roots of the equation

ax^ -{- bx + c =

should be (1) equal in magnitude and opposite in sign, (2) reciprocals.

The roots will be equal in magnitude and opposite in sign if their

sum is zero ; therefore = 0, or 6 = 0.

a
Again, the roots will be reciprocals when their product is unity

;

therefore - = 1, or c = a,
a

Ex. 4. Find the relation which must subsist between the coeffi-

cients of the equation px^ + qx + r = when one root is three times

the other.

We have a -\- b = — ~, ab = ~;

p p
but since a = 3 6, we obtain by substitution

4 6 = - ^, 3 6-^ = -.

p p
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, From the first of these equations b'^ = t^-^, and from the second

b-^ = X.
3p .

g2 _ r
*

16i)2 Sp

or Sq^ = 16pr,

which is the required condition.

314. The following example illustrates a useful applica-

tion of the results proved in Art. 310.

/V.2 I 2 x 11
Ex. If aj is a real quantity, prove that the expression —— .

can have all numerical values except such as lie between 2 and 6.

Let the given expression be represented by y, so that

2(x-3)
^'

then multiplying across and transposing, we have

x2 + 2x(l -y)+6ij- 11=0.

This is a quadratic equation, and if x is to have real values,

4(1 — ?/)2— 4(6?/ — 11) must be positive; or simplifying and dividing

by 4, ^2 — 8 2/ + 12 must be positive ; that is, (y — Q)(y — 2) must be

positive. Hence the factors of this product must be both positive

or both negative. In the former case y is greater than 6 ; in the

latter y is less than 2. Therefore y cannot lie between 2 and 6, but

may have any other value.

In this example it will be noticed that the expression

y^ — Sy -\-12 is positive so long as y does not lie between

the roots of the corresponding quadratic equation

f-Sy + 12 = 0.

This is a particular case of the general proposition investi-

gated in the next article.

315. For all real values of x the expression ax"^ -\- bx -j- e

has the same sign as a, except when the roots of the equation

ax- -f- 6jr + c = are real and unequal, and x lies between them.

Case I. Suppose that the roots of the equation

ax^ -^bx-\- c =
are real ; denote them by i\ and 7*2, and let Vi be the greater.
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Then ax^ ^ bx -i- c = afx^ + ^.^ + -^
\ a a)

= a \x'-{i\ + r.:)x + i\r.^ [Art. 311.]

= a (X — 7',) (x — To).

Now if X is greater than 7*i or less than rg, the factors

X — Ti, X — 7'2 are either both positive or both negative

;

therefore the expression (x — Vi) {x — r^ is positive, and
ax-^-{-'bx-\-c has the same sign as r^. But if x lies between

ri and r^, the expression (x — r^ (x — r^ is negative, and
the sign of cidir + 6a; + c is opposite to that of a.

Case II. If r^ and r^ are equal, then

aoi? -[-hx -{- c = a{x — ri)^,

and {x — ?'i)^ is positive for all real values of x ; hence ax^

-\-hx-\- c has the same sign as a.

Case III. Suppose that the equation ax^+ hx-\- c = ^ has

imaginary roots ; then

ax^ -^ hx -\- c = a \ Q? + -X -\- - y

( a a)

but since 6^ — 4 ac is negative [Art. 310], the expression

(-^)
2 4ac-62

is positive for all real values of x ; therefore ax^ -\-hx -\- c

has the same sign as a.

EXAMPLES XXX. a.

Find (without actual solution) the nature of the roots of the follow-

ing equations

:

1. a;2 + X - 870 = 0. 3. i 3;2 = 14 _ Sx\ 5. 2x = x'^-i- 5.

2. 8 + 6x = 5 :*;2. 4. a:- + 7 = 4x. 6. (.r+ 2)--2=4:t;+ 15.

Form the equations whose roots are

7. 6, -3. 9. a-j-h, a-h. 11. |«, -|ff.

8. - 9, - 11. 10. i, f. 12. 0, f
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13. If the equation sc^ _f. 2(1 + k)x + A;2 =; o has equal roots, what
is the vakie of A: ?

14. Prove that tlie equation 3 7?ix- — (2 m + .3ii)x + 2 w = has

rational roots.

15. Without solving the equation Sx^ — 4.r — 1 = 0, find the sum,

the difference, and the sum of the squares of the roots.

16. Show that the roots of a(a:- ~\) = (J)
— c)x are always real.

Form the equations whose roots are

17. 3 + V5, 3-V5. 18. -2^v'3, -2-^3- 19- -~,l'
5 o

20. 1(4 ±V7). 21. ^ii-^, "-J^- 22. ^, A.

If «, h are the roots of the equation px^ + (/x + r = 0, find the

values of

23. rt2 ^ 52, 25. rt25 _^ ^52. 27. a^^^ + a^fes.

24. («-6)2. 26. aM-ft*. 28. ^ + ^.
6 a

29. If rif, ?) are the roots of x^ — px + </ = 0, and a^, b^ the roots of

X- — Px + ^ = 0, find P and ^ in terms of p and g.

30. If rt, 5 are the roots of x^ — ax + 6 = 0, find the equation

whose roots are — , —

31. Find the condition that one root of the equation ax2+6x+c=
may he double the other.

32. Form an equation whose roots shall be the cubes of the roots

of the equation 2x(x — a)= a^.

33. Prove that the roots of the equation

(« + 6)x2 - (a + & + c)x + ^ =
are always real. ^

34. Show that (a + b + c)x? - 2 (a + &) x + (rt + & - c) = has

rational roots.

r2— 15
35. Show that if x is real the expression ^ cannot lie between

1 r 2x-8
o and 5.

3 '>'2 I 2
36. If X is real, prove that —^ — can have all values except

such as lie between 2 and — f .
^ "~ ^~
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MISCELLANEOUS THEOREMS.

316. The Remainder Theorem. If any algebraical expres-

sion X" + pi«"^i + 2^2!^"''' + Ih^""'^ H h i\- 1^ + P«

be divided by x — a, the remainder ivill be

a" +PiCt''~^ +P2ft""- 4-P3«"^^ H hpn-ltt +iV
Divide the given expression by x — a till a remainder is

obtained which does not involve x. Let Q be the quotient,

and R the remainder ; then

aj« + piic"-^ 4- p2a5"-2 _^ . .
. _|_ ^^_^a; + i?„ = Q(.^' -a)-\-R.

Since jR does not contain x, it will remain unaltered what-

ever value we give to x.

Put x = a, then

a- +pia'»-^ +i92«''^-' +••• + 7>n-ic^ +p„ = Q X + i?^

.: R = a" + i^ift"-! + ^2^" ' H h Pn-i^^ + J\

;

which proves the proposition.

From this it appears that when an algebraic expression

with integral exponents is divided hjx — a, the remainder

can be obtained at once by writing a in the place of x in

the given expression.

Ex. The remainder when x*— 2x^-{-x~7 is divided by a;+2 is

(_2)4_2(-2)3 + (-2)-7;
that is, 16 + 16-2-7, or 23.

317. In the preceding article the remainder is zero when
the given expression is exactly divisible by x—a-, hence we
deduce

:

The Factor Theorem. If any rational and integral expres-

sion containing x becomes equal to iclien a is written for x,

it is exactly divisible by x — a. (See Art. 105.)

318. To find the condition that x^ -\- j^x -\- q may be a

perfect square.

It must be evident that any such general expression can-

not be a perfect square unless some particular relation
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subsists between the coefficients p and q. To find the

necessary connection between p and q is the object of the

present question.

Using the ordinary rule for square root, we have

f P

x^ ^ ^

2x-^§
px + q

px-\-^

f

If therefore y?-\-px+q be a perfect square, the remainder,

q — ^, must be zero. Hence the condition is determined

by placing this remainder equal to zero and solving the

resulting equation.

319. Symmetry. An expression is said to be symmetrical

with resx3ect to the letters it contains when its value is

unaltered by the interchange of any pair of them; thus

x-\-y -\-z, hc-\- ca-\- ah, a? + ?/ + s^ — xyz are symmetrical

functions of the first, second, and third degrees respectively.

It is worthy of notice that the only symmetrical expres-

sion of the first degree in x, y, z is of the form M(x-\-y-\-z),

where M is independent of x, y, z.

320. It easily follows from the definition that the sum,

difference, product, and quotient of any two symmetrical

expressions must also be symmetrical expressions. The

recognition of this principle is of great use in checking

the accuracy of algebraic work, and in some cases enables

us to dispense with much of the labor of calculation. In

the following examples we shall assume as true a principle

which will be demonstrated in Chap. xlii.

Ex. 1. Find the expansion of (x + y -\- zy. We know that the

expansion must be a homogeneous expression of three dimensions,

T
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and therefore of the form x^ }- y^ -\- z^ + Aijic^y + xy^ + y'^z + yz"^ + z'^x

+ zx^) + Bxyz^ where A and 5 are quantities independent of a-, ?/, 2;.

Put ;? = 0, then A, the coefficient of x^y, is equal to 3, the coefficient

of x^y in the expansion of {x + yY.
Put x = y = z=\, and we get 27 = 3 + (3 x 6) +^ ; whence ^ = 6.

Thus {x-Vy -\- zY
= x3 + ?/3 + ^3 + 3 a:2?/ + 3 x?/2 + 3 y'^z + Z yz"^ ^ Z zH ^- ^ zx^ + 6 xyz.

Ex. 2. Pind the factors of

(53 4. c3) (6 - c) + (c3 + «3) (c - a) + («3 + 63) (a - 6).

Denote the expression by E ; then E is an expression involving a,

which vanishes when a = b, and therefore contains a — b as a factor

[Art. 317], Similarly it contains the factors 6 — c and c — « ; thus

^ contains (& — f)(c — a) (a — b) as a factor.

Also since E is of the fourth degree, the remaining factor must be

of the first degree ; and since it is a symmetrical expression involving

a, b, c, it must be of the form ?n(a + 6 + c). [Art. 319.]

.-. E=m(b -c)(c-d){a- b){a + b + c).

To obtain m we may give to a, 6, c any values that we find most

convenient ; thus by putting a = 0, 6 = 1, c = 2, we find m = 1, and

we have the required result.

Note. Por further information on the subject of Symmetry, the

reader may consult Hall and Knight's Higher Algebra, Chap, xxxiv.

EXAMPLES XXX. b.

Without actual division find the remainder when

1. x^ — 5x- + 5 is divided by x — 5.

2. 3 x5 + 11 x4 + 90 x2 - 19 X + 53 is divided by x + 5.

3. x3 — 7 x?a + 8 xcfi + 15 «3 is divided by x + 2 a.

Without actual division show that

4. 32 x^^ - 33 x5 + 1 is divisible by x - 1.

5. 3 x4 + 5 x3 - 13 x2 - 20 X + 4 is divisible by x" - 4.

6. x> + 4 x3 - 5 x2 - 36 X - 36 is divisible by x'^ - x - 6.

Resolve into factors :

7. x3 - 6x2 + 11 X - 6. 11. x3 - 39 X + 70.

8. x3 - 5 x2 - 2 X + 24. 12. x3 - 8 x'^ - 31 x - 22.

9. x3 + 9x2 + 26x + 24. 13. 6x3 + 7 x2 - x - 2.

10. x3 - x2 - 41 X + 105. 14. 6x3 + x^ - 19x + 6.
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Find the values of x which will make each of the following expres-

sions a perfect square :

15. x^ + Qx^ + l^x^+l^x-l. 16. a:4 + 6a:3 + llx2 + 3x + 31.

17. x4 - 2 ax3 + (a2 + 2 h)x? -Zahx + 1 b'\

18. 4p%4 _ 4pqx^ + (g2 + 2i)2)a;2 _ ^pqx +^-.

19
Q'"^^ _ «^^*

I

2 gca;^ 9 b'^x'^ _ 5 ?>c.x g ^^

9 2316 2

20. x4 + 2 «x3 + 3 rt2x2 + ex + d.

Find the values of x which will make each of the following expres-

sions a perfect cube :

21. 8x3-36x2+56x-39. 22. ^ -^ + 4a%2 _ 28a6.

23. ??i%'5 _ 9 ^^i2jix^ _|. 39 ,^^j2^2 _ 51 ,^3.

24. If 11 be any positive integer, prove that 52«-l is always divisible

by 24.

Find the factors of

25. «(&-c)3 + 6(c-a)3 + c(a-6)3.

26. a(6-c)2 + 6(c-a)2 + c(a-6)2 + 8a6c.



CHAPTER XXXI.

Indeterminate Equations of the First Degree.

321. In Art. 167 we saw that if the number of unknown
quantities is greater than the number of independent equa-

tions, there will be an unlimited number of solutions, and
the equations will be indeterminate. By introducing con-

ditions, however, we can limit the number of solutions.

When positive integral values of the unknown quantities

are required, the equations are called simple indeterminate

equations.

The introduction of this restriction enables us to express

the solutions in a very simple form.

Ex. 1. Solve 1 X -{- 12 ?/ = 220 in positive integers.

Transpose and divide by the smaller coefficient ; thus,

Since x and y are to be integers, we must have

^ = niteger.

Now multiplying the numerator hy such a number that the division

of the coefficient ofy may give a remainder of unity ^ in this case 3, we
have

D- 15?/ . ,
r^ = niteger

;

2 — ?/

that is, 1 — 2 ?/ H •- = integer
;

2 — ?/

and therefore •

—

^ = integer.

276
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2 II

Let = m, an integer
;

then y = 2 -7 m (1).

Substituting this vahie in the original equation, we obtain

7 a: + 24 - 84 m = 220
;

.-. x = 28 + 12m (2).

Equation (1) sliows that m may be or have any negative integral

value, but cannot have a positive integral value.

Equation (2) shows in addition that m may be 0, but cannot have a

negative integral value greater than 2. Thus the o\\\y positive integral

values of x and y are obtained by placing m = 0, — 1, — 2.

The complete solution may be exhibited as follows :

m= 0, - 1, -2,

X = 28, 16, 4,

?/= 2, 9, 16.

Ex.2. Solve 5 ic — 14// = 11 in positive integers .... (1).

Proceeding as in Example 1, we obtain

x = 2 + 2?/+^i^;
5

... x-2y -2= ii^-lLl = integer.
5

Now multiplying the numerator by 4, we obtain

llUii^ integer;

that is, 3 ?/ + ^'
"*" = integer.
5

1/ _L 4
Let ^ ^ = m, an niteger

;

.'. y = 5 7)1 _ 4, )

and from (1), x= 14 m — 9. i

This is called the general solution of the equation, and by giving

to m any positive integral value, we obtain an unlimited number of

values for x and y : thus we have

w = l, 2, 3, 4...

?/ = l, 6, 11, 16...

X = 5, 19, 33, 47 »-
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From Examples 1 and 2 the student will see that there

is a further limitation to the number of solutions according

as the terms of the original equations are connected by +
or'—. If we have two equations involving three unknown
quantities, we can easily combine them so as to eliminate

one of the unknown quantities, and can then proceed as

above.

Ex. 3. In how many ways can $ 5 be paid in quarters and dimes ?

Let X — the number of quarters, y the number of dimes ; then

4 10

or 5 X + 2 ?/ = 100
;

.-. 2x4-- + ?/ = 50;

.
•

. / = 1>, an integer
;

.-. X = 2i7,

and ?/ = 50 - hp.

Solutions are obtained by giving to p the values 1, 2, 3, •••, 9 ; and

therefore the number of ways is 9. If, however, the sum be paid

either in quarters or dimes, p may also have the values and 10. If

p = 0, then X = 0, and the sum is paid entirely in dimes ; if j? = 10,

then ?/ = 0, and the sum is paid entirely in quarters. Thus if zero

values of x and y are admissible, the number of ways is 11.

EXAMPLES XXXI.

Solve in positive integers

:

1. 3x + 8?/ = 103. 3. 7x+12?/ = 152. 5. 23 x + 25 ?/ = 915.

2. 6x + 2?/ = 53. 4. 13x+ 11?/ = 414. 6. 41x + 47y = 2191.

Find the general solution in positive integers, and the least values

of X and y which satisfy the equations

:

7. 5x-7?/ = 3. 9. 8x-21?/ = 33. 11. 19y-23x = 7.

8. 6x-13?/ = l. 10. 17?/-13x = 0. 12. 77 1/ - 30 x = 295.

13. A farmer spends •$ 752 in buying horses and cows ; if each horse

costs $37, and each cow $23, how many of each does he buy ?

14. In how many ways can $ 100 be paid in dollars and half-dollars,

including zero solutions ?

15. Find a number which, being divided by 39, gives a remainder

16, and, by 56, a remainder 27, How many such numbers are there ?
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Inequalities.

322. Any quantity a is said to be greater than another

quantity b when a — h is positive ; thus 2 is greater than

—3, because 2 — (—3), or 5, is positive. Also h is said to

be less than a when 6 — a is negative ; thus —5 is less than

—2, because —5 — (—2), or —3, is negative.

In accordance with this definition, zero must be regarded

as greater than any negative quantity.

323. The statement in algebraic language that one ex-

pression is greater or less than another is called an in-

equality.

324. The sign of inequality is >, the opening being placed

towards the greater quantity. Thus, a>b is read " a is

greater than 6."

325. The first and second members are the expressions on

the left and right, respectively, of the sign of inequality.

326. Inequalities subsist in the same sense when corre-

sponding members in each are the greater or the less. Thus,

the inequalities a > & and 7 > 5 are said to subsist in. the

same sense.

In the present chapter, we shall suppose (unless the con-

trary is directly stated) that the letters always denote real

and positive quantities.

327. Inequality Unchanged. An inequality will still hold

after each side has been increased, diminished, midtiplied, or

divided by the same positive quantity.

279
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For, if a > h, then it is evident that

rt + > 6 + c

;

a — c>b — c;

ac > he
;

c c

328. Term Transposed. 7« a?* inequality any term may be

trans^wsed from one side to the other if its siyn be changed.

If a -c>b,
by adding c to each side,

a >b-\- c.

329. Members Transposed. If the sides of an inequality be

transposed, the sign of inequality must be reversed.

For if a > b, then evidently b<a.

330. Signs Changed. If the signs of all the teiims of an
inequ'dlity be changed, the sign of inequality must be reversed.

AYhen a > b, then a — b is positive, and b — a is nega-

tive
; that is, — « — (— b) is negative, and therefore

— a < —b.

331. Negative Multiplier. If the sides of an inequality be

rrodtiplied by the same negative quaidity, the sign of inequality

must be reversed.

For, if a > 5, then — a < —b, and therefore

— rtc < — be.

332. Inequalities Combined. If inequalities, subsisting in

the same sense, be either added, or multiplied together, the

results ivill be unequal in the same sense.

For if tti > bi, a.2 > h,, eta > 63 • • • a„ > b^, it is clear that

«! + «2 -h «3 -f-
••• + a^ > bi + bo -f 6. -h ••• -f 6„;

and a^a^ci^ • • • «m > ^^i^A '" K-
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333. It folloAvs from the preceding article that if a > h,

then a" > h'\

and a~" < h~'\

where n is any positive quantity.

334. The subtraction of two inequalities subsisting in

the same sense does not necessarily give an inequality sub-

sisting in the same sense.

335. The division of an inequality by another subsisting

in the same sense does not necessarily give an inequality

subsisting in the same sense.

The truth of these last statements is readily seen by
considering the inequalities

5>4,
3>2.

Subtracting member for member would give 2 > 2.

Dividing member by member would give | > 2.

Ex. 1. Find hmit of x in the Inequality

3 5 15

Clearing of fractions, we have

15:c-25>3a:+ 11.

Transposing and combining,

12 a: > 36
;

.-. x>3.

Note. The word "limit" is here used as meaning the range of

values that x can have under the given conditions.

Ex. 2. If «, h, c denote positive quantities, prove that

a2 _i_
52 + c2 >hc-\- ca-\- ah.

For &2 + c2 > 2 he,

c2 + a2 ;> 2 ca

a'^-\-h^>2ah.

Whence by addition a- + h- + c- > Z>c + c« + ah.
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Ex. 3. If X may have any real value, find which is the greater,

x^ + 1 or ^2 + X.

x^ ^ \ -{x^ \- x')= x^ - x"^ -{x - Y)^ {x? -r){x- 1)

= {X- 1)2(X+ 1).

Now (a; — 1)2 is positive, hence

x3 + 1 > or < a;2 + ^

according as x ^\ is positive or negative ; that is, according as

a:> or < — 1.

If X = — 1, the inequality becomes an equality.

EXAMPLES XXXII.

Find limit of x in the following three inequalities :

1. llx-4^<^+3i.

2. (a; + 2)(a: + 3)>(a;-4)(a;-5).

3. &x 4- 5 ax — 5 ah > V^ when « > &.

4. Prove that {ah + a:^) (aa: + hy)> 4 «?)a;?/.

5. Prove that (6 + c) (c + «) (a + 6)> 8 a?>c.

6. Show that the sum of any real positive quantity and its

reciprocal is never less than 2.

7. If a2 + 52 ^ 1^ and a;2 ^ ^2 _ 1^ show that ax -\-by<l.

8. If a2 + 52 _|_ c2 = 1, and ^2 + ?/2 + ^2 _ 1^ g^ow that

ax-}- by + cz<:^l.

9. Which is the greater ^^-±-^ or ^-^ ?
2 « + ?>

10. Show that {x^-y + ?/22 + zH) (xi/ + ?/02 4. ^^.2^ ;> 9 x2^2^2.

11. Find which is the greater, 3 «62 qj- a^ + 2 ?>3.

12. Prove that «3?j ^ «^3 < «* + 54.

13. Prove that 6 a6c < 6t'(/> -\- c) -\- ca{c + a) + «?>(« + b).

14. Show that 62c2 4. c2a2 _^ f^2?^2 -> ^^^c(a + 6 + r).

15. Show that 2(a^ + ft^ + c3)> 5f (?> + c) + ca(c + «) + a6(« + &).

Note. For further information on the subject of Inequalities the

reader may consult Hall and Knight's Higher Algebra, Chapter xix.
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MISCELLANEOUS EXAMPLES V.

1. If a = - 1, 6 = 2, c = 0, d = 1, e = - 3, find the value of

a^(d — c) — VS ae + cib

dic-a)-2ad^i-Vlab
2. Simplify [3(a - & + c) - (a -?>)(& - c) + {(a + 6 - c) (3 - &)}].

4(7x-9) _4/g ^x-l\

4. A man's age is four times the combined ages of his two sons, one

of whom is three times as old as the other ; in 24 years their combined

ages will be 12 years less than their father's age : find their respective

ages.

6. Solve (i.) SVx-l^ ^ + 0.

3Vx+ 7

(ii.) VS X + 17 - V2x = V2 X + 9.

7. Expand (2 a - 3 62)5.

8. Simplify — ^•
2x+ 1 3(x + i) 6x + 3

9. If 3 is added to the numerator a certain fraction is increased by
i

; if 3 is taken from the denominator the fraction reduces to } : find

the fraction.

10. Find the value of (i.) 3\/2i3 + 2V^- + 4\/75 - Vf.

\/3 + 3V2
(ii.)

2+V6

11. Solve (i.) —^— +—^ = 16.
^ ^ 1 -2x1 + 2x
(ii.) f(x-2x2)+ 1(1 -2x)=5(i-x).

12. Find the limit of x in the inequality

(x - 4) (x - 5) >(x - 2) (x - 1).

13. The breadth of a rectangular space is 4 yards less than its

length; the area of the space is 252 square yards : find the length of

each side.

14. Solve (i.) x2 + y^ =
V>-,

x + y = i.

(ii.) 2 x2 + x?/ = 4, 3 xy + 4 ?/2 = 22.

15. Find the factors of (i.) x^ + 12 x'^y - 45 xy^.

(ii.) 3x2-31x?/ + 56?/2.
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16. Simplify _^ + ^
- ^ - 1

2 ic3 — 4 a:2 2 x^ + 4 x^ x- — 4

17. Solve ^±i + ^+J=6, 2j^+6_2^J^^5
3 5 y X y

18. Find two numbers whose sum is 22, and the sum of their

squares is 250.

19. Simplify
2c"^.. / h'

\h ^c^ \c -6+1
X 3

20. Solve (i.) ^_-^ ^3+ ^^ + ^
y/x-1 2

(ii.) Vqi-^ + 4x - 4 + Vx-^ + 4a; - 10 = 6.

21. For what value of k will the equation x"^ + 2(^ + 2)x -j- dk =
have equal roots ?

22. Simplify the fractions

:

... a — X .... 1

1-^ a+ «^
X rt — 6

23. B pays $ 28 more rent for a field than A ; he has three-fourths

of an acre more and pays $ 1.75 per acre more. C pays $ 72.50 more

than A ; he has six and one-fourth acres more, but pays 25 cents per

acre less : find the size of the fields.

x + 10 10_11
24. Solve (i.)

X — 5 X 6

Hi ^
_2x_

,
2x - 5 25

x-4 x-3 3

V2

i. Find the value of (

-l +V^V^
f
~ ^

~ ^^^^V when n = 3.

26. Rationalize the denominator of - _
V'2 + V3 - V5

and find a factor which will rationalize \/3 — \/2.

27. Find the square root of (i.) 11 + 4\/(3.

(ii.) -5+ 12V"^.

28. Find the factors of (i.) a2 _ jq - 6 ax + 9 x2.

(ii.) 343xC-27«/3.
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29. Solve (i.) x"^

x^ y^ ^ X y 2

30. A rectangular field is 100 yards wide. If it were reduced to a

square field by cutting an oblong piece off one end, the ratio of the

piece cut off to the remainder would be less by ^^^ than the ratio of the

remainder to the original field. Find the length of the field.

31. Extract the square root of

(i.) 4 ic* + 12 xhj + 13 a;V + 6 ic?/^ + ?/.

a'2 a X x^

32. Solve (i.) 2x+ ?/ + 3^ = 13,

X + 2?/ + 42: = 17,

4ic + 3?/ + 20 = 16.

(ii.) -i-+—i— + ^ -^
\-x Vx + 1 Vx-l

33. Simplify the fractions

1 1 a

1_ J_ 1 i_ 2 +

(ii.)

2x 1—

X

X—

1

2 x^ — 7 x^y + 5 xy"'^ — y^

2x3 + 5x-^y-5x?/2 + ?/

34. Two places, A and B, are 1G8 miles apart, and trains leave A
for B and B for A simultaneously ; they pass each other at the end of

one hour and fifty-two minutes, and the first reaches B half an hour

before the second reaches A. Find the speed of each train.

35. Solve (i.) 3 x2 + 4 x + 2 Vx2 + xT3 = 30 - x^.

(ii.) x* + ?/4 = 706, X + ?/ = 8.

36. Form the equation whose roots are the squares of the sum and

of the difference of the roots of

2 x2 + 2{m + n)x + iii^ + n^ = 0.

37. Employ the method of Arts. 319, 320 in showing that

{a -\-by-a^-b^ = 5 ab(a + h) (a^ + ab + 6'^),

38. Solve x«/(3 x + y)= 10, 27 x^ + ^/ = 35.
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Ratio, Proportion, and Variation.

336. Definition. Ratio is the relation which one quan-

tity bears to another of the same kind, the comparison being

made by considering what multiple, part, or parts, one quan-

tity is of the other.

The ratio of ^4 to -B is usually written A : B. The quan-

tities A and B are called the terms of the ratio. The first

term is called the antecedent, the second term the consequent.

337. Ratios are measured by Fractions. To find what
multiple or part A is of B, we divide A hj B-, hence the

A
ratio A : B may be measured by the fraction — , and we

shall usually find it convenient to adopt this notation.

In order to compare two quantities, they must be ex-

pressed in terms of the same unit. Thus, the ratio of f 2

to 15 cents is measured by the fraction or — •

^
15 3

Note. Since a ratio expresses the number of times that one quan-

tity contains another, every ratio is an abstract quantity.

338. By Art. 136, 7='-^;
mo

and thus the ratio a : 6 is equal to the ratio ma : mh ; that

is, the value of a ratio remains unaltered if the antecedent and

the consequent are midtiplied or divided by the same quantity.

339. Comparison of Ratios. Two or more ratios may be

compared by reducing their equivalent fractions to a com-

mon denominator. Thus, suppose a : h and x : y are two

ratios. Now, - = -^, and - = ^ ; hence the ratio a \ h is

h by y by

286
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greater than, equal to, or less than the ratio x : y according

as ay is greater than, equal to, or less than hx.

340. The ratio of two fractions can be expressed as a

ratio of two integers. Thus, the ratio - : - is measured by

- -j- - or —'

\ and is therefore equivalent to the ratio ad : be.
b d be

341. If either, or both, of the terms of a ratio be a surd

quantity, then no two integers can be found which will

exactly measure their ratio. Thus, the ratio ^2 : 1 cannot

be exactly expressed by any two integers.

342. If the ratio of any two quantities can be expressed

exactly by the ratio of two integers, the quantities are said

to be commensurable ; otherwise, they are said to be incom-

mensurable.

Although we cannot find two integers which will exactly

measure the ratio of two incommensurable quantities, we
can always find two integers whose ratio differs from that

required by as small a quantity as we please.

Thus, ^ = 2:236061^^ 553016...;
4 4

and, therefore,

V5 • ^ 559016 1 ^ 559017
-^^— is > and <

;

4 1000000 1000000

and it i§ evident that by carrying the decimals further, any
degree of approximation may be arrived at.

343. Katios are compounded by multiplying together the

fractions which denote them.

Ex. Find the ratio compounded of the three ratios

2 a :3 b, 6 «& : 5 c2, c : a.

The required ratio =^ y,^^ x ^ = ^-^-

3 6 5 c^ a 5 c

344. When two identical ratios, a : b and a : b, are com-

pounded, the resulting ratio is a^ : b^, and is called the
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duplicate ratio of a : b. Similarly, (c- : // is called the tripli-

cate ratio of a : h. Also, a'^ : h^ is called the subduplicate

ratio of a : h.

Examples (1) The duplicate ratio of 2 « : 3 /> is ^a" : 9b^.

(2) The subduplicate ratio of 49 : 25 is 7 : 5.

(3) The triplicate ratio of 2x : 1 is 8r/^ : 1.

345. A ratio is said to be a ratio of greater inequality, or

of less inequality, according as the antecedent is greater or

less than the consequent.

346. If to each term of the ratio 8 : 3 we add 4, a new
ratio 12 : 7 is obtained, and we see that it is less than the

former because ^- is clearly less than |.

This is a particular case of a more general proposition

which we shall now prove.

A ratio of greater inequality is diminished, and a ratio of less

inequality is increased, by adding the same quantity to both its

terms.

Let - be the ratio, and let
"
be the new ratio formed

b b +x
by adding x to both its terms.

^T a a + X ax — bx x(a — b)Now -^— = — = -^ ^

;

b b-{-x b{b-{-x) b(b-\-x)'

and a — b is positive or negative according as a is greater or

less than b.

TT '-c • >^ 7 a ^ a -\- X
Hence, it a is > o, - is >——

;

b b -\- X

T -r • ^ 7 a ^a -\- X
and II a is < b, - is <—'—

,

b b -i-x

which proves the proposition.

Similarly, it can be proved that a ratio of greater inequal-

ity is increased, and a ratio of less inequality is diminished,

by taking the same quantity from both its terms.

347. When two or more ratios are equal, many useful

propositions may be proved by introducing a single symbol

to denote each of the equal ratios.
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The proof of the following important theorem will illus-

trate the method of procedure.

each of these ratios ^(p^l±l^l±j:^

where yo, q, r, n, are any quantities whatever.

T 4.
ace 7.Let =- = -=... =^k;
b d f

then a = bk, c = dk, e = fk, • • •

;

whence pa** = 7)6"^'", qc'' = qd"k'% re" = rf'k'\ • • •

;

jm^ + qG"" + re'' H _ pb"k'' + gd»A;^^ + ?/"^•» + •'• _ ^.»

.

'

p?>" + gc^ + ^/" H
~

pb"" + gcr* + r/" + ... "" '

1
'

pcC' -\- qd' 4- >'g" + ••'V _ 7. _ « _ _^

_

p6'' + gd" + r/'" H y ~ ~b~d~
By giving different values to p, q, r, n many particular

cases of this general proposition may be deduced ; or they

may be proved independently by using the same method.

For instance, if

-=-:=-. each of these ratios = --^—^^
;

b d f b + d+f'
a result which may be thus enunciated : When a series of

fractions are ecpial, each of them is equal to the sum of all the

numerators divided by the sum of cdl the denominators,

Ex. 1. If ^ = - fiud the value of ^ ^ ~ "^ ^
.

y 4 7x + 2y

— — 3 — — 3
5x-3y _ y_ J _3^

y " 4

Ex. 2. Two numbers are in the ratio of 5 : 8. If 9 be added to

each they are in the ratio of 8:11. Find the numbers.

Let tlie numbers be denoted by 5 a: and 8 x.

Then 5£+9^1 ._ ^ ^ 3^

8x + 9 11

Hence the numbers are 15 and 24.

u
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Ex. 3. If A : B be in the duplicate ratio of A -{• x : B -\- x, prove

that :c2 = AB.

A
B

.'. B{A -{- xy = A(B -{- ot^"^,

A'B + 2 ABx + Bx"^ = AB^ + 2 ABx + Ax'^y

x\A - B)= AB(A - B);

.'. x^ = AB,

since A — B is, by supposition, not zero.

EXAMPLES XXXIII. a.

Find the ratio compounded of

1. The duplicate ratio of 4:3, and the ratio 27 : 8.

2. The ratio 32 : 27, and the triplicate ratio of 3 : 4.

3. The subduplicate ratio of 25 : 36, and the ratio 6 : 25.

4. The triplicate ratio oi x: y, and the ratio 2 ?/2 : 3 xJ^.

5. The ratio 3 a : 4 6, and the subduplicate ratio of b^ : a'

6. If X : y = 5 : 7, find the value of x + y : y — x.

find the value of
x-^y

y 2x-by
8. If 6 : a r= 2 : 5, find the value of 2 a - 3 6 : 3 /; - a,

9. If ^ = -, and ^ = ^, find the value of
^^^~^•'^

6 4 y 7 4by ~1 ax

10. If 7 a: — 4 ?/ : 3 X + ?/ = 5 : 13, find the ratio x : y.

11. If ^ ^'"^ ~ ^ ^^ = A find the ratio a : b.

a2 + 62 41'

12. If 2 X : 3 y be in the duplicate ratio of 2 x — m :Sy — m, prove

that rri^ = Qxy.

13. li P: Qhe the subduplicate ratio of P — x : Q — x, prove that

14. If - = - = -, prove that each of these ratios is equal to
b cl f

^'2a2c + 3c3e + 4e2c
^.

15. Two numbers are in the ratio of 3 : 4, and if 7 be subtracted

from each the remainders are in the ratio of 2 : 3 : find them.

16. What number must be taken from each term of the ratio 27 ;35

that it may become 2:3?
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17. What number must be added to each term of the ratio 37 : 29

that it may become 8:7?

18. If —^ = —^— = —^^, show that p -]- q-\-r = 0.
b — c c — a a — b

19. If -J— = _1_ = _^, show that x-y -\- z = 0.
b -\- c c -\- a a — b

20. If - = - = — , show that the square root of

'

^^!^^l1|!£+1«Wjs equal to ^.
b^ - 2 d^f + S b*cd^e'^ ^ bdf

21. Prove that the ratio la^mc-\-ne:lb-\-md+nf ^\\\ be equal to

each of the ratios a:b, c:d, e :/, if these be all equal ; and that it will

be intermediate in value between the greatest and least of these ratios

if they be not all equal.

23. If
bx-ay ^ ex - az ^ z±ji^

^^^^^^ ^.^^ ^^^^ ^^ ^^^^^^ fractions
cy — az by — ax x -{- z

be equal to -, unless 6 + c = 0.

y

23. If
"^^-^y = ^ZLJ/ = _^±l£. g ^^^^ g^^j^ Qf ^j^ggg j.^^.^g
oz -\- y z -X 2y -3x

is equal to - ; hence show that either x = y, or z = x -\- y.

PROPORTION.

348. Definition. Four quantities are said to be in

proportion when the ratio of the first to the second is equal

to the ratio of the third to the fourth. The four quantities

are called proportionals, or the terms of the proportion.

Thus, if - = -, then a, b, c, d are proportionals. This is
b d

expressed by saying that a is to & as c is to d, and the pro-

portion is written

a \ h : : c : d, or a : b = c : d.

The terms a and d are called the extremes, b and c the means.

349. If four quantities are in proportion, the product of the

extremes is equal to the product of the means.

Let a, b, c, d be the proportionals.
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Then by definition - = -

;

h d

whence ad = bc.

Hence if any three terms of a proportion are given, the

fourth may be found. Thus if a, c, d are given, then h=~-
c

Conversely, if there are any four quantities, a, b, c, d,

such that ad = be, then a, b, c, d are proportionals ; a and d
being the extremes, b and c the means ; or vice versd.

350. Continued Proportion. Quantities are said to be in

continued proportion when the first is to the second, as the

second is to the third, as the third to the fourth ; and so on.

Thus a, b, c, d, ••• are in continued proportion when

a_b _c__
bed

If three quantities a, b, c are in continued proportion, then

a: b= b : e;

.-. ac = b\ (Art. 349.)

In this case b is said to be a mean proportional between a
and c ; and c is said to be a third proportional to a and b.

351. If three quantities are proportionals, the first is to the

third in the duplicate ratio of the first to the second.

Let the three quantities be a, b, e; then - = -•

b c

Now « = «x?! = ^'x- = ^';

c b e b b b'-

that is, a: e = a~ : b^.

352. The products of the corresponding terms of two or more

proportions form a proportion.

If a:b = c:d and e :/= g : h, then will

ae : bf= eg : dh.

For ?= ^ and ^ = »;.-. ^ =% or «e : bf= cy : dh.
b d f h' If dh' -^

•'
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Cor.

and

then

If a: b = c : d,

b : X = d : y,

a: X = c : y.

353. Transformations that may be made in a Proportion.

If four quantities, a, b, c, d form a proportion, many other

proportions may be deduced by the properties of fractions.

The results of these operations are very useful, and some
of them are often quoted by the annexed names borrowed
from Geometry.

(1) If a : ^ = c : d, then b\ a—d c.

For 3=
^;b d

that is

or

a
therefore 1--- = 1-- -

b d

b^d,
a G

'

b: a=d: c.

[Inversion.]

(2) If a :b = c: d, then a : c

For ad. = be

bid.

therefore '^ = ^',
cd

that is,

or

cd

- — -•
c~d''

a : c = b : d.

[Alternation.]

(3) If a:b — c:d, then a -{- b:b = c-\- did [Composition.]

ror^ = ^;
b d'

that is,

or

therefore ^ + 1=^ + 1
b

a-\-b

d

c + d

b d
'

a-\-bib = c-\-di d.

(4) If a : 6 = c : d, then a — b ib = c

a c

d I d. [Division.]

For
b d'

therefore --1=^

that is,

b

a — b d

or

b d
'

a — bib = c — did.
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(5) If a:b = c: d, then a -\- b : a — b = c -\- d: c — d.

[Composition and Division.]

For by (3) ^^ =^ i
and by (4) -^=^^

;

.'. by division, —-— = -;
-^ '

a — bc — d

or a -\- b : a — b = c -\- d : c — d.

Several other proportions may be proved in a similar way.

Ex. 1. If a:b = c:d = e :/,

show that 2 a2 -I- 3 c2 - 5 e2 : 2 62 + 3 ^2 _ 5^-2 = ae : bf.

Let ^ = ^ = ^ = k; then a = bk, c = dk, e=fk;
b d f

•'•

2 62 + 3fZ2_5/2~ 2 62 + 3^2-5/2 6 / 6/'

or 2 a2 + 3 c2 - 5 e2 : 2 62 + 3 d2 _ 5/2 3^ «e .

^y.

Ex.2. If

(3a + 66 + c + 2f0(3a-66 -c + 2d)

= (3a-66 + c-2fZ)(3a + 66 -c-2fZ),

prove that a, 6, r, tZ are in proportion.

We have
3« + 66 + c + 2r? ^ 3a + 66-c-2.Z, ^^^^ 3^,^

3a-66 + c-2d 3a-66-c + 2d

, ,. . . 2(3 a + c) 2(3 a -c)
Composition and division ^ ' — ^

Alternation,

2(6 6 + 2d) 2(6 6 -2c?)

3ff + c ^ 66 + 2(Z

3«-c~66-2d*

Again, composition and division, — = ;

2 c 4d
whence a : h = c : d.

x^-{-x-2 4 .r2 4- 5 .r - 6
Ex. 3. Solve the equation

Division,

- 2 5 .^ - 6

a;2 4a;2

X — 2 dx — 6

whence, dividing by a;2, which gives a solution x = 0, [Art. 291, note.]

1 4

x-2 5 .r - 6

and therefore the roots are 0, — 2.

whence, x = — 2
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EXAMPLES XXXIII. b.

Find a fourth proportional to

1. a, ab, c. 2. a^2a&, 3&2. 3. x^,xy,6x2y.

Find a third proportional to

4. a'^b, ab. 5. x^, 2x2. 6. Sx,6xy. 7. 1, x.

Find a mean proportional between

8. a^b^. 9. 2x3, 8 X. 10. 12ax2, 3«3. n. 27 a-b^,Sb.

If a, 6, c be three proportionals, show that

12. a : a + b = a — b : a — c.

13. (/;2 + 6c + c2) («c - 5c + c2) = &* + «c3 + ci

If a : & = c : fZ, prove that

14. ab -\-cd:ab-cd = a'^ + c^:a^- c2.

15. a2 + fjc + C2 : rt2 _ «C + C2 == &2 +6(^4. d^ ;
^2 _ 5^ + c22_

16. a : 6 = V3 a2 + 5 c^ : V3 62 + 5 d^.

17. - + -: a =- + -:<^-

,0 i>
,
a ab _^d

,
c cd

10. - +
a 6 a2 4. 52 c cZ c2 + ^2

Solve the equations

:

19. 3x- 1 :6x-7 = 7x-10:9x + 10.

20. X - 12 : ?/ + 3 = 2 X - 19 : 5 ?/ - 13 = 5 : 14.

2j x2-2x + 3 ^ x2-3x + 5 22 2x- 1 _ x

2x-3 3x-5 x2 + 2x-l x2 + x + 4

23. If (a + 6 ~ 3 c - 3 d)(2 a - 2 6 - c + cZ)

= (2a + 26-c-d)(a-6-3c + 3fO

prove that a, 6, c, d are proportionals.

24. If «, 6, c, d are in continued proportion, prove that

a : d = a3 4- 63 + c3 : 63 + c3 + #.

25. If 6 is a mean proportional between a and c, show that

4 ^2 _ 9 ^2 is to 4 62 - 9 c2 in the duplicate ratio of a to h.

26. If a, 6, c, d are in continued proportion, prove that 6 + c is a

mean proportional between « + 6 and c + d.

27. If a + 6 : 6 + c = c + (Z : cZ + a,

prove that a = c, or a 4- 6 + c + cZ = 0.



296 ALGEBRA.

VARIATION.

354. Definitiox. One quantityA is said to vary directly

as another B, Avhen the two quantities so depend upon each

other that if B is changed, A is changed in the same ratio.

Note, The word directly is often omitted, and A is said to vary

as B.

355. For instance : if a train moving at a uniform rate

travels 40 miles in 60 minutes, it will travel 20 miles in 30

minutes, 80 miles in 120 minutes, and so on ; the distance

in each case being increased or diminished in the same ratio

as the time. This is expressed by saying that when the

velocity is uniform the distance is proportional to the time, or

more briefly, the distance varies as the time.

356. The Symbol of Variation. The symbol oc is used to

denote variation; so that ^ cc ^ is read "A varies as -B."

357. If A varies as B, then /I is equal to B multiplied by
some constant quantity.

For suppose that «i, cio, a^..., b^, bo, 63 ... are corresponding

values of A and B.

Then, by definition, - = -; - = -', - = -
; and so on

:

Cli bi ffco bo Cfcg 63

.*. ^ = ^ = ^ = .. each being equal to —

•

bi b2 bs '
^ ^ B

JJar^n^ ^^^Y ValuC Of ^ . , ^,-tlence ^
^ -_- is always the same

;

the corresponding value of i>

A
that is, — = m, where m is constant.B

.-. A = mB.

358. Definition. One quantity A is said to vary in-

versely as another B when A varies directly as the reciprocal

of B. [See Art. 176.]
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Thus if A varies inversely as B, A = — , where m is con-

stant.

The following is an illustration of inverse variation : If 6

men do a certain work in 8 hours, 12 men would do the

same work in 4 hours, 2 men in 24 hours ; and so on. Thus

it appears that when the number of men is increased the

time is proportionately decreased; and vice versd.

359. Definition. One quantity is said to vary jointly as

a number of others when it varies directly as their product.

Thus'^ varies jointly as B and C when A = mBC. For

instance, the interest on a sum of money varies jointly as

the principal, the time, and the rate per cent.

360. Definition. A is said to vary directly as B and

inversely as C when A varies as —

•

C

361. Grouping the principles of Arts. 357-360, we have

A = mB, if A varies directly as B,

A = —, if A varies inversely as B.

A = mBC, if A varies jointly as B and C,

A = ^^, if A varies directly as B and inversely as C.

362. If A varies as B when C is constant, and A varies as C

when B is constant, then will A vary as BC when both B and

C vary.

The variation of A depends partly on that of B and partly

on that of C. Suppose these latter variations to take place

separately, each in its turn producing its own effect on A;
also let a, b, c be certain simultaneous values of A, B, C.

1. Let C he constant while B changes to b ;
then A must

undergo a partial change and will assume some intermediate

value a', where

^=1 w.
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2. Let B he constant, that is, let it retain its value h, Avliile

C changes to c ; then A must complete its change and pass

from its intermediate value a' to its final value a, where

^Jl —— (2)
a c

From (1) and (2) ^ X - = ^ X -

;

a' a b c

that is, A = ~'BC,
be

or A varies as BC.

363. The following are illustrations of the theorem proved

in the last article.

The amount of work done by a given number of men varies

directly as the number of days they work, and the amount
of work done in a given time varies directly as the number
of men ; therefore when the number of days and the num-
ber of men are both yariable, the amount of work will vary

as the product of the number of men and the number of days.

Again, in Geometry the area of a triangle varies directly

as its base when the height is constant, and directly as the

height when the base is constant ; and when both the height

and base are variable, the area varies as the product of the

numbers representing the height and the base.

Ex. 1. If ^ X B, and CocI>, then will ACcc BD.
For, by supposition, A = mB, C = uD, where m and n are con-

stants.

Therefore AC = muBD ; and as ran is constant, AC x BD.

Ex. 2. If X varies inversely as [/'- — 1, and is equal to 24 when
y = 10 ; find x when y = o.

By supposition, x = —^— , where m is constant.
y-- 1

Putting X = 24, y = 10, we obtain 24 = ^,
99

whence m = 24 x 99
;

24 X 99

y^-1
hence, putting ?/ = 5, we obtain x = 99.
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Ex. 3. The volume of a pyramid varies jointly as its height and

the area of its base ; and when the area of the base is 60 square feet

and the height 14 feet, the volume is 280 cubic feet. What is the

area of the base of a pyramid whose volume is 390 cubic feet and

whose height is 26 feet ?

Let F denote the volume, A the area of the base, and h the height;

then V= mAh, where m is constant.

Substituting the given values of F, A, h, we have

280 = m X 60 X 14
;

280 ^1
' '

''^ ~ 60 X 14
~ 3'

.-. V=\Ah.
Also when V= 390, /i = 26

;

.-. 390=ii^ x26;

.-. A = ¥o.

Hence the area of the base is 45 square feet.

EXAMPLES XXXIII. C.

1. If a; X ?/, and y = 7 when x = 18, find x when y = 21.

2. If X X y, and y = 3 when x = 2, find y when x = 18.

3. A varies jointly as B and C; and A = Q when B = 3, (7 = 2:

find A when B = 6, 0=7.

4. A varies jointly as B and C ; and J. = 9 when ^ = 5, (7=7:
find B when A = 54, (7 = 10.

5. If X X -, and ?/ = 4 when x = 15, find y when x = Q.

y

6. If y X -, and y = 1 when x = 1, find x when y = 5.

X

7. A varies as B directly, and as (7 inversely ; and ^ = 10 when
^ = 15, (7=6: find A when ^ = 8, (7 = 2.

8. If X varies as y directly, and as z inversely, and x = 14 when

y = 10, z = 14, find z when x = 49, ?/ = 45.

9. If X X -, and ?/ x -, prove that z x x.

y z

10. If a X &, prove that a" x 6".

11. li xcc z and y cc z, prove that x'^ — y^cx. z^.

12. If 3 « + 7 & X 3 a + 13 &, and when a = 5, 5 = 3, find the equa-

tion between a and 6.
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13. li 5 x — y^ 10 X - 111/, and when x = 7, y = 5, find the equa-

tion between x and //.

14. If the cube of x varies as the square of ?/, and it x=S when
y = 5, find the equation between x and y.

15. If the square root of a varies as the cube root of />, and if

a = 4: when 6 = 8, find the equation between a and b.

16. If y varies inversely as the square of x, and it y = S when
X = 8, find x when y = 2.

17. If x X ?/ + a, where a is constant, and x = 1^ when ?/ = 1, and
a; =z 35 when y = 5 ; find x when y = 2.

18. If rt + & oc rt — 6, prove that cfi + ?>"^ x ah; and if « oc b, prove

that rt'^ — Ij-^cc ah.

19. If ?/ be the sum of three quantities which vary as a-, x^, x^

respectively, and when x = 1, ^ = 4, when x = 2, ^ = 8, and when
X = 3, ^ = 18, express y in terms of x.

20. Given that the area of a circle varies as the square of its radius,

and that the area of a circle is 154 square feet when the radius is

7 feet : find the area of a circle whose radius is 10 feet C inches.

21. The area of a circle varies as the square of its diameter : prove

that the area of a circle whose diameter is 2\ inches is equal to the

sum of the areas of two circles whose diameters are 1^ and 2 inches

respectively.

22. The pressure of wind on a plane surface varies jointly as the

area of the surface, and the square of the wind's velocity. The press-

ure on a square foot is 1 pound when the wind is moving at the rate

of 15 miles per hour : find the velocity of the wind when the pressure

on a square yard is 16 pounds.

23. The value of a silver coin varies directly as the square of its

diameter, while its thickness remains the same ; it also varies directly

as its thickness while its diameter remains the same. Two silver

coins have their diameters in the ratio of 4:3. Find the ratio of

their thicknesses if the value of the first be four times that of the

second.

24. The volume of a circular cylinder varies as the square of the

radius of the base when the height is the same, and as the height

when the base is the same. The volume is 88 cubic feet when the

height is 7 feet, and the radius of the base is 2 feet : what will be the

heiglit of a cylinder on a base of radius feet, when the volume is

390 cubic feet ?



CHAPTER XXXIV.

Arithmetical, Geometrical, and Harmonical
Progressions.

364. A succession of quantities formed according to some
fixed law is called a series. The separate quantities are

called terms of the series.

arithmetical progression.

365. Defixitiox. Quantities are said to be in Arithmeti-

cal Progression when they increase or decrease by a common
difference.

Thus each of the following series forms an Arithmetical

Progression

:

3, 7, 11, 15, ...

8, 2, -4, -10,...

a, a -\- d, a-\-2d, a + 3 c?, ....

The common difference is found by subtracting any term
of the series from that which follows it. In the first of the

above examples the common difference is 4 ; in the second
it is — 6 ; in the third it is d.

366. The Last, or nth Term, of an A. P. If we examine
the series

a, a + d, a -f 2 c/, a -f- 3 c?, • • •

loe notice that in any term the coefficient of d is always less by
one than the number of the term in the series.

301
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Thus the 3d term is a +2(1;

6th term is a -\- od]

20th term is a + ldd;

and, generally, the pth term is a -{-(p — 1) d.

If n be the number of terms, and if / denote the last, or

nth. term, we have
J = a + {n- 1) d.

367. The Sum of n Terms in A. P. Let a denote the first

term, d the common difference, and // the number of terms.

Also let I denote the last term, and S the required sum ; then

S = a + (a + d)-\-(a + 2f?) + -- + (? - 2 d) + (l - d)+L

and, by writing the series in the reverse order,

S = 1 +{l - d)-\-(l -2 d)+ ->--{-(a -{- 2d) + (a + d)+ a.

Adding together these two series,

2S = (a -i- l)-\-{a -\- l) + {a -\- 1)+ '" to n terms = n (a + I),

••• S = l(a + I) (1).

Since l = a-\-(n-l)d (2);

.-. S = '^\2a+(n-l)d\ . . . (3).

368. In the last article we have three useful formulae (1),

(2), (3) ; in each of these any one of the letters may denote

the unknown quantity when the three others are kno^\^l.

Ex. 1. Find the 20th and 35th terms of the series

38, 30, 34, ....

Here the common difference is 30 — 38, or — 2.

.-. the 20th term = 38 + 19 (- 2) = ;

and the 35th term = 38 + 34 (- 2) = - 30.

Ex. 2. Find the sum of the series 5|, 6|, 8, •.• to 17 terms.

Here the common difference is 1^ ; hence from (3)

The sum = ^^{2 x -V- + 10 x li}

= V (11 + -0) = ll2^ = 2031.
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Ex. 3. The first term of a series is 5, the last 45, and the sum 400 :

find the number of terms, and the common difference.

If )i be the number of terms, then from (1),

400=^(5 + 45);

Avhence n = 16.

If d be the common difference,

45 = the 16th term = 5 + 15 d
;

whence ^ = 2|.

EXAMPLES XXXIV. a.

1. Find the 27th and 41st terms in the series 5, 11, 17, ••-.

2. Find the 13th and 109th terms in the series 71, 70, 69, •••.

3. Find the 17th and 54th terms in the series 10, 11^, 13, •••.

4. Find the 20th and 13th terms in the series —3, —2, —1, •••.

5. Find the 90th and 16th terms in the series —4, 2.5, 9, •••.

6. Find the 37th and 89th terms in the series -2.8, 0, 2.8, ••..

Find the last term in the following series :

7. 5, 7, 9, ... to 20 terms. 10. .6, 1.2, 1.8, ... to 12 terms.

8. 7, 3, -1, ... to 15 terms. 11. 2.7, 3.4, 4.1, ... to 11 terms.

9. 131, 9, 41, ... to 13 terms. 12. x, 2x, 3:c, ... to 25 terms.

13. a — d, a -}- d, a + S d, ••' to SO terms.

14. 2 a - &, 4 a - 3 &, 6 a - 5 5, ... to 40 terms.

Find the last term and sum of the following series :

15. 14, 64, 114, ... to 20 terms. 18. i, -i, -|, ... to 21 terms.

16. 1, 1.2, 1.4, ... to 12 terms. 19. 3|, 1, -1^, ... to 19 terms.

17. 9, 5, 1, ... to 100 terms. 20. 64, 96, 128, ... to 16 terms.

Find the sum of the following series-:

21. 5, 9, 13, ... to 19 terms. 26. 10, 9|, 9i, ... to 21 terms.

22. 12, 9, 6, ... to 23 terms. 27. !>, 3;?, ^p, to p terms.

23. 4, 51, 6h, ... to 37 terms. 28. 3a, a, —a, ... to a terms.

24. lOi 9, Ih, ••• to 94 terms. 29. a, 0, -a, .•• to a terms.

25. —3, 1, 5, ... to 17 terms. 30. — Sg, — g, q, ... to ;.> terms.
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Find the number of terms and the common difference when

31. The first term is 3, the last term 90, and the sum 1395.

32. The first term is 79, the last term 7, and the sum 1075.

33. The sum is 24, the first term 9, the last term —6.

34. The sum is 714, the first term 1, the last term 58^.

35. The last term is —16, the sum —133, the first term —3.

36. The first term is —75, the sum —740, the last term 1.

37. The first term is a, the last 13 «, and the sum 49 a.

38. The sum is —320 x, the first term 3 x^ the last term —35 x.

369. If cmy two terms of an Arithmetical Progression be

given, the series can be completely determined ; for the data

furnish two simultaneous equations, the solution of which

will give the first term and the common difference.

Ex. Find the series whose 7th and 51st terms are —3 and —355
respectively.

If a be the first term, and d the common difference,

—3 = the 7th term = « + 6 fZ

;

and —355 = the 51st term = a + 50 cZ

;

whence, by subtraction, —352 = 44 fZ

;

.
•

. fZ = —8
; and, consequently, a = 45.

Hence the series is 45, 37, 29 •••.

370. Arithmetic Mean. When three quantities are in

Arithmetical Progression, the middle one is said to be

the arithmetic mean of the other two.

Thus a is the arithmetic mean between a — d and a + d.

371. To find the arithmetic mean between two given quan-

tities.

Let a and b be the two quantities ; A the arithmetic mean.

Then, since a, A, b, are in A.P., we must have

b — A = A — a,

each being equal to the common difference

;

whence A = „ •
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372. Between two given quantities it is always possible

to insert any number of terms sucli that the whole series

thus formed shall be in A. P. ; and by an extension of the

definition in Art. 370, the terms thus inserted are called

the arithmetic means.

Ex. Insert 20 arithmetic means between 4 and 67.

Including the extremes the number of terms will be 22 ; so that we
have to find a series of 22 terms in A. P., of which 4 is the first and
67 the last.

Let d be the common difference
;

then 67 = the 22d term, = 4 + 21 tZ
;

whence d = 3, and the series is 4, 7, 10, ••• 61, 64, 67
;

and the required means are 7, 10, 13, ••• 58, 61, 64.

373. To insert a given number of arithmetic means between

two given quantities.

Let a and h be the given quantities, m the number of

means.

Including the extremes the number of terms will be

m + 2 ; so that Ave have to find a series of m 4- 2 terms in

A. P., of which a is the first, and h is the last.

Let d be the common difference

;

then h = the {m + 2)th term

= a + {m -hl)f?;

whence d =
;m + 1

and the required means are

,
b — a

,
2(b — a)

,
m(b — a)

m + 1 m + l m -{-1

Ex. 1. Find the 30th term of an A. P. of which the first term is

17, and the 100th term - 16.

Let d be the common difference
;

then - 16 = the 100th term

= 17 + 99(Z;

.-. d=--l.

The 30th term = 17 + 29( - i) = 7i.
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Ex. 2. The sura of three numbers in A. P. is 33, and their product

is 792 ; tind them.

Let a be the middle number, d the common difference ; then the

three numbers are a — d, a, a + d.

Hence a — d + a-\-a + d = dS;

whence a = 11 ; and the three numbers are 11 — (7, 11, 11 + (?.

.-. 11(11 + cr)(ll-rf)= 792,

121 -cP = 72,

fZ = ± 7
;

and the numbers are 4. 11, 18.

Ex. 3. How many terms of the series 24, 20, 16. ••• must be taken

that the sum may be 72 ?

Let the number of terms be n ; then, since the common difference

is 20 - 24, or - 4, we have from (3), Art. 367,

72=5(2 x24+(n-l)(-4)}

= -24:n -2n(n- 1) ;

whence n^ - 13 n + 36 = 0,

or (n-4)(n-9)=0;
.-. n = 4 or 9.

Both of these values satisfy the conditions of the question ; for if

we write down the first 9 terms, we get 24, 20. 16, 12. 8, 4, 0, - 4,

— 8 ; and. as the last five terms destroy each other, the sum of 9

terms is the same as that of 4 terms.

Ex. 4. An A. P. consists of 21 terms ; the sum of the three terms

in the middle is 129, and of the last three is 237 ; find the series.

Let a be the first term, and d the common difference. Then

237 = the sum of the last three terms

= a + 20 rZ + a -f 19 f? + rt + 18 d = 3 a + 57 r7

;

whence a + l9d = 't9 (1).

Again, the three middle terms are the 10th, 11th, 12th
;

hence 129 = the sum of the three middle terms

= a-\-9d-\-a + lOd + a + Ud = Sa-{- 30 r?

;

whence a 4- 10 d = 43 (2).

From (1) and (2), we obtain d = 4, a = S.

Hence the .series is 3, 7, 11, ••• 83.
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EXAMPLES XXXIV. b.

Find the series in which

1. The 27th term is 186, and the 45th term 312.

2. The 5th term is 1, and the 31st term — 77.

3. The 15th term is - 25, and the 23rd term - 41.

4. The 9th term is - 11, and the 102nd term - loOi.

5. The 15th term is 25, and the 29th term 46.

6. The 16th term is 214, and the 51st term 739.

7. The 3rd and 7th terms of an A. P. are 7 and 19 ; find the 15th

term.

8. The 54th and 4th terms are — 125 and ; find the 42nd term.

9. The 31st and 2nd terms are i and 7| ; find the 59th term.

10. Insert 15 arithmetic means between 71 and 23.

11. Insert 17 arithmetic means between 93 and 69.

12. Insert 14 arithmetic means between — 71 and — 21.

13. Insert 16 arithmetic means between 7.2 and — 6.4.

14.

How many terms must be taken of

15. The series 42, 39, -36, ... to make 315 ?

16. The series - 16, - 15, - 14. ... to make - 100 ?

17. The series 15f,
15i, 15, ... to make 129 ?

18. The series 20, 18f, 17 J, ... to make 162^ ?

19. The series - 10^, - 9, - 7i^, ... to make - 42 ?

20. The series - 6|, - 6f , - 6, ... to make - 52i ?

21. The sum of three numbers in A. P. is 39, and their product is

2184 : find them.

22. The sum of three numbers in A. P. is 12, and the sum of their

squares is 66 : find them.

23. The sum of five numbers in A. P. is 75, and the product of the

greatest and least is 161 : find them.

24. The sum of five numbers in A. P. is 40, and the sum of their

squares is 410 : find them.

25. The 12th, 85th, and last terms of an A. P. are 38, 257, 395 re-

spectively : find tbe number of terms,



308 ALGEBRA.

GEOMETRICAL PROGRESSION.

374. Dkffxitiox. Quantities are said to be in Geometri-

cal Progression when they increase or decrease by a constant

factor.

Thus each of the following series forms a Geometrical

Progression

:

3, 6, 12, 24, ...

1 _ i 1 i_

a, ar, ai^, ar^, ...

The constant factor is also called the common ratio, and it

is found by dividing a/<?/ term by that which immediately

precedes it. In the first of the above examples the common
ratio is 2 ; in the second it is — i

; in the third it is r.

375. The Last, or nth Term, of a G. P. If we examine the

series

a, ar, ai^, ar'^, ar^, ...

we notice that in any term the index of r is always less by one

than the number of the term in the series.

Thus the 3rd term is a?*^

;

the 6th term is a?*^

;

the 20th term is ar^^-,

and, generally, the pth term is arP~\

If n be the number of terms, and if I denote the last, or

nth term, we have I = ar"~^

Ex. Find the 8th term of the series — i,
|, — J, ...

The common ratio is ^ -4-(— •^), or — ^
;

. •. the 8th term = - i x ( - §)'

_ Iv— 2187— 129

376. Geometric Mean. When three quantities are in Geo-

metrical Progression the middle one is called the geometric

mean between the other two.
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377. To find the geometric mean between two given quan-

tities.

Let a and b be the two quantities ; G the geometric mean.
Then since a, G, b are in G. P.,

b_^G
G a

each being equal to the common ratio

;

.-. G' = ab;

whence G = ^ab.

378. To insert a given number of geometric means between

two given quantities.

Let a and b be the given quantities, m the number of

means.

There will be m + 2 terms ; so that we have to find a

series of m + 2 terms in G. P., of which a is the first and
b the last.

Let r be the common ratio

;

then 6= the (m+2)th term — ar'"+^

;

1

(1).

Hence the required means are ar, ar"^, • • • ar"^, where r has

the value found in (1).

Ex. Insert 4 geometric means between 160 and 5,

We have to find 6 terms in G. P. of which 160 is the first, and 5 the

sixth.

Let r be the common ratio
;

then 5 = the sixth term = 160 r^

;

• • ' — 33 >

whence, by trials v = \;

and the means are 80, 40, 20, 10.
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,379.; The Sum of n Terms in G. P. Let a be the first terni,

?• tlrg^common ratio, n the number of terms, and S the sum
required. Then

S = a + ar + ar"- H h af"^^ + aV'^
;

multii)lying' every term by r, we have

rS = ar -[- ai^ -\ h «v'"^- + af'-'^ + «?'"•

Hence by subtraction,

rS — S = <6?'" — a
;

.-. (r- 1)5 = «()•»-!);

,.s = <'-"-}^
^^^

r — 1

Changing the signs in numerator and denominator

^='<^-';")
(2).

Note. It will be fomid convenient to remember both forms given

above for A', ushig (2) in all cases except when r is positive and greater

than 1.

Since ar"~i = I, it follows that «r" = rZ, and formula (1) may be

written

o_ rl — a
~ r-l'

Ex. 1. Sum the series 81, 64, 86, ••• to 9 terms.

The common ratio = |i = |, which is less than 1
;

hence the sum = ^^l - (|)!} ^ 243{1 - (f)9}

Ex. 2. Sum the series f,
— 1, ^,

••• to 7 terms.

The common ratio = — f ; hence by formula (2

1 + f I

.

EXAMPLES XXXIV. c.

1. Find the 5th and 8th terms of the series o, 6, 12, •••.

2. Find the 10th and 16th terms of the series 256, 128, 64, ••

3. Find the 7th and 11th terms of the series 64, - 32, 16, •••
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4. Find the 8th and 12th terms of the series 81, - 27, 9, ••-.

5. Find the 14th and 7th terms of the series ^h^ sh^ tVi '•*•

6. Find the 4th and 8th terms of the series .008, .04, .2, ....

Find tlie hist term in the following series :

7. 2, 4, 8, ... to 9 terms. 10. 3, - S'-^, 3^, ... to 2 « terms.

8. 2, -6, 18, ... to 8 terms.
11. X, x^, x^

12. X, 1,
9. 2, 3, 41, ... to 6 terms. x

13. Insert 3 geometric means between 486 and 6.

14. Insert 4 geometric means between i and 128.

15. Insert 6 geometric means between 56 and — /g.

16. Insert 5 geometric means between ff and 4|.

Find the last term and the sum of the following series

:

• to p terms,

to 30 terms.

17. 3, 6, 12, ... to 8 terms.

18. 6, - 18, 54, ... to 6 terms.

19. 64, 32, 16, ... to 10 terms.

Find the sum of the series

:

20. 8.1, 2.7, .9, ... to 7 terms.

21. • to 8 terms.

23. 3, - 1, 1,... to 6 terms.
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make the fraction —-^ as small as we please. Thus by taking

a sufficient number of terms the sum can be made to differ

by as little as we please from 2.

In the next article a more general case is discussed.

381. Sum to Infinity. From Art. 379 we have

<;^
_ ff (1 — ?•") _ _a ar''

1 — r 1 — r 1 — r

Suppose r is a proper fraction ; then the greater the value

of n the smaller is the value of r", and consequently of

—— ; and therefore by making n sufficiently large, we can

make the sum of n terms of the series differ from
^ _ by

as small a quantity as we please.

This result is usually stated thus : the sum of an infinite

number of terms of a decreasing Geometrical Progression is

or more briefly, the sum to infinity is
1-r' -" " - l_r

382. E-ecurring decimals furnish a good illustration of

Infinite Geometrical Progressions.

Ex. Find the value of .423.

.423 = .4232323 ... = — + -^ + -^^— + ... = :^ +— -\-~ -\- "•
10 1000 100000 10 103 ^ 105

^

10 ion 102 104 I 10 10^

23 1

10^
1 _ J_

4 , 23 100 4 , 23 419 102

10
"^

103 '99 10
"^
990 990'

which agrees with the value found by the usual arithmetical rule.

EXAMPLES XXXIV. d.

Sum to infinity the following series

:

1. 9,6,4,... 3. i, i,
i,... 5. i,

f,^,... 7. .9, .03, .001,...

2. 12,6,3,... 4. ^,-1,1,... 6. 1,-1,1,... 8. .8, -.4, .2, -.

Find by the method of Art. 382, the value of

9. .3. 10. .16. 11. .24. 12. .378. 13. .037.
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Find the series in which

14. The 10th term is 320 and the 6th term 20.

15. The 5th term is f |^ and the 9th term is i.

16. The 7th term is 625 and the 4th term - 5.

17. The 3d term is j\ and the 6th term - 4^

.

18. Divide 183 into three parts in G. P. such tliattlie sum of the first

and third is 2^^ times the second.

19. Show tliat tlie product of any odd number of consecutive terms

of a G. P. will be equal to the nth power of the middle term, n being

the number of terms.

20. The first two terms of an infinite G. P. are together equal to 1,

and every term is twice the sum of all the terms which follow. Find

the series.

Sum the following series

:

21. 2/^ + 2&, ?/* + 4 6, 2/6 + 6 6, ••• to n terms.

22. ?jtlV?, 1,
^-^^^

...to infinity.

3-2V2 3 + 2V2
23. Vi W'^^ fVf, to infinity.

24. 2 n — 1, 4 n + i, 6 w — j\, ... to 2 n terms.

25. The sum of four numbers in G. P. is equal to the common ratio

plus 1, and the first term is j\. Find the numbers.

26. The difference between the first and second of four numbers
in G. P. is 96, and the difference between the third and fourth is 6.

Find the numbers.

27. The sum of $ 225 was divided among four persons in such a

manner that the shares were in G. P., and the difference between the

greatest and least was to the difference between the means as 21 to 6,

Find the share of each.

28. The sum of three numbers in G. P. is 13, and the sum of their

reciprocals is J/. Find the numbers.

HARMONICAL PROGRESSION.

383. Definition. Three quantities, a, b, c, are said to

be in Harmonical Progression when - = •

c - b — c

Any number of quantities are said to be in Harmonical

Progression when every three consecutive terms are in

Harmonical Progression.



814 ALGEBRA.

384. The Reciprocals of Quantities in Harmonical Progression

are in Arithmetical Progression.

By definition, if a, b, c are in Harmonical Progression,

a _ a—b ,

c b — c^

.-. a(b — c) — c{a — b),

dividing every term by abc,

1_1^1_1
c b b a

which proves the proposition. We may therefore define an
Harmonical Progression as a series of quantities the recipro-

cals of which are in Arithmetical Progression.

385. Solution of Questions in H, P. Harmonical x^roper-

ties are chiefly interesting because of their importance in

Geometry and in the Theory of Sound : in Algebra the

proposition just proved is the only one of any importance.

There is no general formula for the sum of any number of

quantities in Harmonical Progression. Questions in H. P.

are generally solved by inverting the terms, and making
use of the properties of the corresponding A. P.

Ex. The 12th term of an H. P is |, and the 19th term is ^^ : find

the series.

Let a be the first term, d the common difference of the correspond-

ing A. P. ; then
5 = the 12th term = a -{ \\d;

and -2^2 _ the 19th term = « + 18 d
;

whence f? = !» ^ = t-

Hence the Arithmetical Progression is |, |, 2, |, •••

and the Harmonical Progression is |, |, ^, f,
••••

386. Harmonic Mean. When three quantities are in

Harmonic Progression the middle one is said to be the

Harmonic Mean of the other two.
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387. To find the harmonic mean between two given quan-

tities.

Let «, h be the two quantities, H their harmonic mean

;

then -, ,
- are in A. P.

;

a H h

" H a h H'

H a b'

2 ahH=
a

388. Relation between the Arithmetic, Geometric, and Har-

monic Means. If A, G, H be the arithmetic, geometric, and

harmonic means between a and h, we have proved

A =^^ (1).

G = Vab (2).

H=-^^ (3).

Therefore ^^=^.1^
2 a-hb

= ab=G^',

that is, G is the geometric mean between A and H.

389. Miscellaneous Questions in the Progressions. Miscel-

laneous questions in the Progressions afford scope for

much skill and ingenuity, the solution being often very

neatly effected by some special artifice. The student will

find the following hints useful.

1. If the same quantity be added to, or subtracted from,

all the terms of an A. P., the resulting terms will form an

A. P., with the same common difference as before. [Art.

365.]
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2. If all the terms of an A. P. be multiplied or divided

by the same quantity, the resulting terms form an A. P.,

but with a new common difference. [Art. 365.]

3. If all the terms of a G. P. be multiplied or divided by
the same quantity, the resulting terms form a G. P. with

the same common ratio as before. [Art. 374.]

4. If a, b, c, d •" be in G. P., they are also in continued

proportion, since by definition

a_&_c_ _1bed r

Conversely, a series of quantities in continued proportion

may be represented by x, xr, xr, • • •

.

Ex. 1. Find three quantities in G. P. such that their product is

Let -, rt, ar be the three quantities :

r

then we have
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Ex. 3. The nth term of an A. P. is - -f 2 : find the sum of 49

terms.

Let a be the first term, and I the last ; then by putting w = 1,

and n = 49 respectively, we obtain

a = i + 2, 1 = ^^+2',

Ex. 4. If «, 6, c, (Z, e be in G. P., prove that h ^ d is the geomet-

ric mean between a A- c and q + e.

Since «, 6, c, c?, e are in continued proportion,

a _ 6 _ c _ ^.

... each ratio .:. ^i^t_2 =: ^l±i. [Art. 347.]
h \-(l c + e

Whence (6 + dy- ={a -^ c){c ^ e).

EXAMPLES XXXIV. e.

1. Find the 6th term of the series 4, 2, 1|, •••.

2. Find the 21st term of the series 2
J, l|f, Ij^e, •••

.

3. Find the 8th term of the series 1^, 1|}, 2i%, •«•

.

4. Find the wth term of the series 3, 1^, 1, ...

.

Find the series in which

5. The 15th term is ^V? and the 23d term is ^V-

6. The 2d term is 2, and the 31st term is /j.

7. The 39th term is j\, and the 54th term is Jg-

Find the harmonic mean between

8. 2 and 4. 9. 1 and 13. 10. I and j\.

11. - and -. 12. —^ and —

^

13. x + y and a: - ?/.

a b X + y x — y

14. Insert two harmonic means between 4 and 12.

15. Insert three harmonic means between 2| and 12.

16. Insert four harmonic means between 1 and 6.
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17. If G be the geometric mean between two quantities A and B,

show that the ratio of the arithmetic and harmonic means of A and G
is equal to tlie ratio of the arithmetic and harmonic means of G and B.

18. To each of three consecutive terms of a G. P., the second of

the three is added. Sliow that tlie three resulting quantities are in

PI. P.

Sum the following series

:

19. 1 + If + 3Jg + ... to 6 terms.

20. 1 + If + 2^ + ... to 6 terms.

21. (2 a + a;) + 3 a + (4 « - x) + ... to p terms.

22. If - li + f to 8 terms.

23. If + 11 + I + ... to 12 terms.

24. li X — a^ y — «, and z — a he, in G.P., prove that 2(?/ — a) is

the harmonic mean between y — x and y — z.

25. If a, 6, c, d be in A. P., a, e, /, d in G. P., «, ^, /i, d in H. P.

respectively
;
prove that ad = ef =bh = eg.

26. If a^, &2, c2 be in A. P., prove that & + c, c+ a, a+ & are in H. P.



CHAPTER XXXV.

Permutations axd Combixatioxs.

390. Each of the arrangements which can be made by

taking some or all of a number of things is called a permu-

tation.

Each of the cjroups or selections which can be made by

taking some or all of a number of things is called a com-

bination.

Thus the permutations which can be made by taking the

letters a, b, c, d two at a time are twelve in number ; namely,

ab, ac, ad, he, bd, cd,

ha, ca, da, cb, dh, dc]

each of these presenting a different arrangement of two

letters.

The combinations which can be made by taking the letters

a, b, c, d two at a time are six in number ; namely,

ab, ac, ad, be, bd, cd-,

each of these presenting a different selection of two letters.

From this it appears that in forming combinations we are

only concerned with the number of things each selection

contains ; whereas in forming permidations we have also to

consider the order of the things which make up each arrange-

ment ;
for instance, if from four letters a, b, c, d we make

a selection of three, such as abc, this single combination

admits of being arranged in the following ways

:

abc, acb, bca, bac, cab, cha,

and so gives rise to six different permutations.

319
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391. Fundamental Principle. Before discussing the gen-

eral propositions of this chapter the following important

principle should be carefully noticed.

If one operation can he performed in m ways, and (when it

has been performed in any one of these icays) a second opera-

tion can then he performed in n ivays; the number of ivays of

2)erforminf/ the two operations icill be m x n.

If the first operation be performed in any one way, we
can associate with this any of the n ways of performing the

second operation ; and thus we shall have n ways of per-

forming the two operations without considering more than

one way of performing the lirst ; and so, corresponding to

each of the m ways of performing the first operation, we
shall have n ways of performing the two ; hence the product

m X )i represents the total number of ways in which the two

operations can be performed.

Ex. Suppose there are 10 steamers plying between New York and
Liverpool : in how many ways can a man go from New York to

Liverpool and return by a different steamer ?

There are ten ways of making the first passage ; and with each of

these there is a choice of jiine ways of returning (since the man is

not to come back by the same steamer); hence the number of ways
of making the two journeys is 10 x 9, or 90.

This principle may easily be extended to the case in

which there are more than t^vo operations each of which

can be performed in a given number of ways.

Ex. Three travellers arrive at a town where there are four hotels
;

in how many ways can they take up their quarters, each at a differ-

ent hotel ?

The first traveller has choice of four liotels, and when he has made
his selection in any one way, the second traveller has a choice of

three ; therefore the first two can make their choice in 4 x 3 ways

;

and with any one such choice the third traveller can select his hotel

in 2 ways ; hence the required number of ways is 4 x 3 x 2, or 24.

392. To find the number of permutations of n dissimilar

things taken r at a time.

This is the same thing as finding the number of ways in
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wliicli we can fill r places when we have n different things

at our disposal.

The first place may be filled in n ways, for any one of

the n things may be taken ; when it has been filled in any

one of these ways, the second place can then be filled in

n — 1 ways ; and since each way of filling the first place

can be associated with each way of filling the second, the

number of ways in which the first two places can be filled

is given by the product n{n — 1). And when the first two

places have been filled in any way, the third place can be

filled in n — 2 ways. And reasoning as before, the number
of ways in which three places can be filled is n{n— l){n—2).

Proceeding thus, and noticing that a new factor is intro-

duced with each new place filled, and that at any stage the

mnnher of factors is the same as the number of places filled,

we shall have the number of ways in which r places can be

filled equal to

71 (ii — l)(7i — 2) ... to r factors.

We here see that each factor is formed by taking from n a

number one less than that which applies to the place filled by

that factor; hence the 7'th factor is n— (r— 1), or n—r+l.
Therefore the number of permutations of n things taken

r at a time is

7i(7i-l)(7i-2)...(7i-r4-l).

CoR. The number of permutations of n things taken all

at a time is

n{n — 1) (71 — 2)... to 71 factors,

or 7<7t-l)(7i-2)...3.2.1.

It is usual to denote this product by the symbol \n, which

is read '^factorial ?i." Also n ! is sometimes used for \n.

393. We shall in future denote the number of permuta-

tions of n things taken r at a time by the symbol "P^, so

that

"P, = n{ii - l){n - 2) ...(71 - r + 1) J

also "P„ = |7i.

Y
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In working numerical examples it is useful to notice that

the suffix in the symbol "P^ always denotes the number of

factors in the formula we are using.

Ex. 1. Four persons enter a carriage in which tliere are six seats :

in how many ways can they take their places ?

The first person may seat himself in 6 ways ; and then the second

person in 5 ; the third in 4 ; and the fourth in 3 ; and since each of

these ways may be associated with each of the others, the required

answer is 6 x 5 x 4 x 3, or 360.

Ex. 2. How many different numbers can be formed by using six

out of the nine digits 1, 2, 3, ••• 9 ?

Here we have 9 different things, and we have to find the number of

permutations of them taken 6 at a time
;

.-. the required result = ^Pq

= 9x8x7x6x5x4 = 60480.

394. To find the number of combinations of n dissimilar

things taken r at a time.

Let "C^ denote the required number of combinations.

Then each of these combinations consists of a group of

r dissimilar things which can be arranged among themselves

in Ij^ways. [Art. 392, Cor.]

Hence "(7^ X [r is equal to the number of arrangements of

n things taken r at a time ; that is,

"0, X [r = "P, = 7i(n - 1) (n - 2) • • • (^n - r + 1)

;

.. C-
^

. . (1).

CoR. This formula for "(7^ may also be written in a

different form ; for if we multiply the numerator and the

denominator by \n — r we obtain

n (n - 1) (n - 2) • • • 0*, - ?• + 1) x
\

n-r [n

.

—
, >

01'
1^

• {^y-)
\r\n — r [r\ )> — r

since n(n — l)(?i — 2) • • • (n — r + 1) x \7i — r = [n.

It will be convenient to remember both these expressions

for "(7,., using (1) in all cases where a numerical result is

required, and (2) when it is sufficient to leave it in an

algebraic shape.
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Note. If in formula (2) we put r = n, we have

but »0„ = I, so that if the formula is to be true for r = n, the symbol

[0 must be considered as equivalent to 1.

Ex. From 12 books in how many ways can a selection of 5 be

made, (1) when one specified book is always included, (2) when one

specified book is always excluded ?

(1) Since the specified book is to be included in every selection,

we have only to choose 4 out of the remaining 11.

Hence the number of ways = 1104 = ^^ x ^^ x ^ ^ ^ = 330.^ 1x2x3x4
(2) Since the specified book is always to be excluded, we have to

select the 5 books out of the remaining 11.

Hence the number of ways = nC's = ^ x IQ x 9 x 8 x 7 ^ ^^2.
1x2x3x4x5

395. The number of combinations of n things r at a time is

equal to the number of combinations of n things n—r at a time.

Ill making all the possible combinations of n things, to

eacli group of r things we select, there is left a correspond-

ing group of n — r things ; that is, the number of combina-

tions of n things r at a time is the same as the number of

combinations of n things 71 — r at a time

;

This result is frequently useful in enabling us to abridge

arithmetical work.

Ex. Out of 14 men in how many ways can an eleven be chosen ?

The required number = ^^Cn = ^^€3 = ^^ x 13 x 12 ^ ^^^
1x2x3

If we had made use of the formula ^'^Cn, we should have had to

reduce an expression whose numerator and denominator each con-

tained 11 factors.

396. In the examples which follow it is important to

notice that the formula for permutations should not be used

until the suitable selections required by the question have

been made.
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Ex. 1. From 7 Englishmen and 4 Americans a committee of 6 is

to be formed: in how many ways can this be done, (1) when the

committee contains exactly 2 Americans, (2) at least 2 Americans ?

(1) The number of ways in which the Americans can be chosen is

*C2 ; and the number of ways in which the Englishmen can be chosen

is "^(74. Each of the first groups can be associated with each of the

second ; hence

the required number of ways =^(72 x '^C^

14 17 17_ L_ ^ L— _ L. _
2]^Q

|_2^ [ill I^12|i

(2) We exhaust all the suitable combinations by forming all the

groups containing 2 Americans and 4 Englishmen ; then 3 Americans

and 3 Englishmen ; and lastly 4 Americans and 2 Englishmen.

The sum of the three results gives the answer. Hence the required

number of ways = ^C^ x '^d + ^Cs x '^Cs + ^d x "^Ca

^_^xi +^xi^ + lx^
[2^ lil^l IJIi^ ^|_5

= 210 + 140 + 21 = 371.

In this example we have only to make use of the suitable formula

for combinations, for we are not concerned with the possible arrange-

ments of the members of the committee among themselves.

Ex. 2. Out of 7 consonants and 4 vowels, how many words can be

made each containing 3 consonants and 2 vowels ?

The number of ways of choosing the three consonants is '^Cg, and

the number of ways of choosing the two vowels is ^d; and since

each of the first groups can be associated with each of the second, the

number of combined groups, each containing 3 consonants and 2

vowels, is '^Cs x ^02.

Further, each of these groups contains 5 letters, which may be

arranged among themselves in \_5 ways. Hence

17 |4
the required number of words = -^=^ x ^=- x 1

5

= 5 X IJ = 25200.

EXAMPLES XXXV. a.

1. Find the value of sp^, "Pe, ^^5, 25C23.

2. How many different arrangements can be made by taking (1) five,

(2) all of the letters of the word soldier 9

3. If "O3 : "-iC'4 = 8:6, find n.
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4. How many different selections of four coins can be made from a

bag containing a dollar, a half-dollar, a quarter, a florin, a shilling, a

franc, a dime, a sixpence, and a penny ?

5. How many numbers between 3000 and 4000 can be made with

the digits 9, 3, 4, 6 ?

6. In how many ways can the letters of the word volume be

arranged if the vowels can only occupy the even places ?

7. If the number of permutations of n things four at a time is

fourteen times the number of permutations of n — 2 things three at a

time, find n.

8. From 5 teachers and 10 boys how many committees can be

selected containing 3 teachers and 6 boys ?

9. If 2ocV = 2oc^_jo^ find '•C12, 18(7,.

10. Out of the twenty-six letters of the alphabet in how many ways
can a word be made consisting of five different letters two of which

must be a and e ?

11. How many words can be formed by taking 3 consonants and 2

vowels from an alphabet containing 21 consonants and 5 vowels ?

12. A stage will accommodate 5 passengers on each side : in how
many ways can 10 persons take their seats when two of them remain

always upon one side and a third upon the other ?

397. Hitherto, in the formulae we have proved, the things

have been regarded as unlike. Before considering cases in

which some one or more sets of things may be like, it is

necessary to point out exactly in what sense the words like

and unlike are used. When we speak of things being

dissimilar, different, unlike, we imply that the things are

visibly unlike, so as to be easily distinguishable from each

other. On the other hand, we shall always use the term

like things to denote such as are alike to the eye and cannot

be distinguished from each other. For instance, in Ex. 2,

Art. 396, the consonants and the vowels may be said each to

consist of a group of things united by a common character-

istic, and thus in a certain sense to be of the same kind;

but they cannot be regarded as like things, because there is

an individuality existing among the things of each group

which makes them easily distinguishable from each other.

Hence, in the final stage of the example we considered each
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group to consist of five dissimilar things and therefore

capable of |_5 arrangements among themselves. [Art. 392,

Cor.]

398. To find the permutations of n things, taking them all

at a time, when p things are of one kind, q of another kind, n

of a third kind, and the rest all different.

Lei; there be n letters ; suppose p of them to be a, q of

them to be b, r of them to be c, and the rest to be unlike.

Let X be the required number of permutations ; then if in

any one of these permutations the p letters a were replaced

by p unlike letters different from any of the rest, from this

single permutation, without altering the position of any of

the remaining letters, we could form \p new permutations.

Hence if this change were made in each of the x permuta-

tions, we should obtain x x \p permutations.

Similarly, if the q letters b were replaced by q unlike

letters, the number of permutations would be x x\p X \q.

In like manner, by replacing the r letters c by r unlike

letters, we should finally obtain x x\p_x\q x\r permutations.

But the things are now all different, and therefore admit

of [?i permutations among themselves. Hence

X X \p X \q X \]^= \n^j

that is,

which is the required number of permutations.

Any case in which the things are not all different may be

treated similarly.

Ex. 1. IIow many different permutations can be made out of the

letters of the word assassination taken all together ?

We have here 13 letters of which 4 are s, 3 are a, 2 are i, and 2 are

w. Hence the number of permutations

113

[4[3|_2|_2

= 13. 11 -10. 9. 8. 7. 3. 5

= 1001 X 10800 = 10810800.
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Ex. 2. How many numbers can be formed with the digits 1, 2, 3,

4, 3, 2, 1, so that the odd digits always occupy the odd places ?

The odd digits 1, 3, 3, 1 can be arranged in their four places in

-^=— ways (1).

[2|^ "^ ^
^

The even digits 2, 4, 2 can be arranged in their three places in

= ways (2).

\1

Each of the ways in (1) can be associated with each of the ways
in (2).

|4 13
Hence the required number = -^— x — = 6 x 3 = 18.

399. To find the number of permutations of n things r at a

time, when each thing may be repeated once, twice, ... up to r

times in any arrangement.

Here we have to consider the number of ways in which r

places can be filled when we have n different things at our

disposal, each of the n things being used as often as we
please in any arrangement.

The first place may be filled in 7i ways, and, when it has

been filled in any one way, the second place may also be

filled in n ways, since we are not precluded from using the

same thing again. Therefore the number of ways in which
the first two places can be filled is w x 7i or 7i^.

The third place can also be filled in n ways, and therefore

the first three j)laces in n^ ways.

Proceeding thus, and noticing that at any stage the index

of n is always the same as the number of places filled, we
shall have the number of ways in which the r places can be

filled equal to n''.

Ex. In how many ways can 5 prizes be given away to 4 boys, when
each boy is eligible for all the prizes ?

Any one of the prizes can be given in 4 ways ; and then any one

of the remaining prizes can also be given in 4 ways, since it may be

obtained by the boy who has already received a prize. Thus two
prizes can be given away in 4- ways, three prizes in 4^ ways, and so

on. Hence the 5 prizes can be given away in 4^, or 1024 ways.



328 ALGEBRA.

400. To find the total number of ways in which it is possible

to make a selection by taking some or all of n things.

Each thing may be dealt Avith in two Avays, for it may
either be taken or left ; and since either way of dealing with

any one thing may be associated with either way of dealing

with each one of the others, the number of Avays of dealing

with the n things is

2 X 2 X 2 X 2 ... to 71 factors.

But this includes the case in which all the things are left,

therefore, rejecting this case, the total number of Avays is

2"-l.
This is often spoken of as " the total number of combina-

tions " of n things.

Ex. A man has G friends ; in how many ways may he invite one or

more of them to dinner?

He has to select some or all of his 6 friends ; and therefore the

number of ways is 2^ — 1, or 63.

This result can be verified in the following manner.

The guests may be invited singly, in twos, threes, ... ; therefore the

number of selections

= G + 15 4- 20 + 15 + + 1 = 03.

401. To find for what value of n the number of combinations

of n things r at a time is greatest.

n{n - 1) {n - 2) ... (n - r + 2) (n - r + 1)
Since "C^

and "C,_i

1.2.3... (r-l)r

7i0i-l)0?,-2)...(?i-r + 2)

1.2.3...(r-l) '

n — r -\-l

r

The multiplying factor
^^~^"^

may be written ^^-t 1,

Avhich shoAvs that it decreases as r increases. Hence as r

receiA^es the values 1, 2, 3,... in succession, "C^ is continu-
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71-1-1
ally increased, until —^^— 1 becomes equal to 1 or less

than 1.

I^ow 'ii5t - 1 > 1, so long as ^^i±i > 2; that is, ^^ > r.

r r 2

We have to choose the greatest value of r consistent with

this inequality.

(1) Let n be even, and equal to 2 in ; then

n -h 1 2 m 4- 1
,

,

and for all values of r up to m inclusive this is greater than

r. Hence by putting r = m = -, we find that the greatest

number of combinations is "(7„.

(2) Let n be odd, and equal to 2 ?>i -|- 1 ; then

n-\-\ 2m -f-

2

2 2
= ?/i + 1

;

and for all values of r up to m inclusive this is greater than

r; but when r=m-\-\, the multiplying factor becomes equal

to 1, and

"^m+l = '*^m 5
that IS, "C,^_f^ = '^^^H-l j

2 2

and therefore the number of combinations is greatest when

the things are taken , or —^— at a time ; the result

being the same in the two cases.

EXAMPLES XXXV. b.

1. Find the number of permutations which can be made from all

the letters of the words,

(1) irresistible, (2) phenomenon, (3) tittle-tattle.

2. How many different numbers can be formed by using the seven

digits 2, 3, 4, 3, 3, 1, 2 ? How many with the digits 2, 3, 4, 3, 3, 0, 2 ?
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3. How many words can be formed from the letters of the word
Simoom, so that vowels and consonants occur alternately in each word ?

4. A telegraph has 5 arms, and each arm has 4 distinct positions,

including the position of rest: find the total number of signals that

can be made.

5. In how many ways can n things be given to m persons, when
there is no restriction as to the number of things each may receive '?

6. How many different arrangements can be made out of the let-

ters of the expression a^b^c^ when written at full length ?

7. There are 4 copies each of 3 different volumes ; find the

number of ways in which they can be arranged on one shelf.

8. In how many ways can 6 persons form a ring ? Eind the num-
ber of ways in which 4 gentlemen and 4 ladies can sit at a round table

so that no two gentlemen sit together.

9. In how many ways can a word of 4 letters be made out of the

letters a, 6, e, c, d, o, when there is no restriction as to the number of

times a letter is repeated in each word ?

10. How many arrangements can be made out of the letters of the

word I'oulouse, so that the consonants occupy the first, fourth, and
seventh places ?

11. A boat's crew consists of eight men of whom one can only row
on bow side and one only on stroke side : in how many ways can the

crew be arranged ?

12. Show that »'+iC; = »Cr + ''Cr^i.

13. If 2nC3:"C2=44:3, find ?i.

14. Out of the letters A, B, O, p, g, r, how many arrangements can

be made beginning with a capital ?

15. Find the number of combinations of 50 things 46 at a time.

16. U^^Cr = ''Wr+2, find'-Cs.

17. In how many ways is it possible to draw a sum of money from

a bag containing a dollar, a half-dollar, a quarter, a dime, a five-cent

piece, a two-cent piece, and a penny ?



CHAPTER XXXVI.

Probability (Chance).

402. Definition. If an event can happen in a ways and
fail in h ways, and each of these ways is equally likely, the

probability, or the chance, of its happening is , and of

its failing is Hence to find the probability of an

event happening, divide the number of favorable ways by the

ivhole number of ways favorable and unfavorable.

For instance, if in a lottery there are 7 prizes and 25

blanks, the chance that a jjerson holding 1 ticket will win
a prize is -^, and his chance of not winning is |f

.

Instead of saying that the chance of the happening of an
a

event is — , it is sometimes stated that the odds are a to b
a-\-b

in favor of the event, or b to a against the event.

Thus in the above the odds are seven to twenty-five in

favor of the drawing of a prize, and twenty-five to seven

against success.

403. The reason for the mathematical definition of proba-

bility may be made clear by the following considerations

:

If an event can happen in a ways and fail to happen in b

ways, and all these ways are equally likely, we can assert

that the chance of its happening is to the chance of its fail-

ing as a to b. Thus if the chance of its happening is re^^re-

sented by ka, where k is an undetermined constant, then

the chance of its failing will be represented by kb.

.-. chance of happening -f chance of failing = k(a + 5).

331
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Now the event is certain to happen or to fail ; therefore the

sum of the chances of happening and failing must rej)resent

certainty. If therefore we agree to take certainty as our unit,

we have

1 = A; (a + b), or k = ,

a + 6

.'. the chance that the event will happen is

and the chance that the event will not happen is
a-\-b

Cor. If p is the probability of the happening of an event,

the probability of its not happening is 1 — p.

404. The definition of probability in Art. 402 may be

given in a slightly different form which is sometimes useful.

If c is the total number of cases, each being equally likely

to occur, and of these a are favorable to the event, then the

probability that the event Avill happen is -, and the proba-
c

bility that it will not happen is 1

Ex. 1. (a) From a bag containing 4 white and 5 black balls a man
draws a single ball at random. What is the chance that it is black ?

A black ball can be drawn in 5 ways, since any one of the 5 black

balls may be drawn. In the same way any one of the 4 white balls

may be drawn.

5 5
Hence the chance of drawing a black ball is , or —

''

4 + 5 9

(b) Suppose the man draws 3 balls at random. What are the

odds against these being all black ?

The total number of ways in which 3 balls can be drawn is ^Cs,

and the total number of ways of drawing 3 black balls is ^Cs ; there-

fore the chance of drawing 3 black balls

9(73 9.8-7 42*

Thus the odds against the event are 37 to 6.
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Ex. 2. From a bag containing 5 red balls, 4 white balls, and 5

black balls, 6 balls are drawn at random. What is the chance that

3 are white, 2 black, and 1 red ?

The number of combinations of 4 white balls, taken 3 at a
4.3.2

time, is or 4. In the same manner the number of combina-

tions of 5 black balls, taken 2 at a time, is ^^ or 10. Since each of

the 4 combinations of white balls may be taken with any one of the
10 combinations of black, and with each of the combinations so

formed we may take any one of the 5 red balls, the total number of

combinations will be 4 • 10 • 5 or 200. But the number of combinations

of the entire number of balls, taken 6 at a time is
• lo • 1-^ • II • 10 • 9

1.2.3.4.5.6
or 3003, hence the chance that 3 white, 2 black, and 1 red ball will

Ex. 3. A has 3 shares in a lottery in which there are 3 prizes and
6 blanks ; B has 1 share in a lottery in which there is 1 prize and 2

blanks. Show that A's chance of success is to B's as 16 to 7.

A may draw 3 prizes in 1 way ; he may draw 2 prizes and 1

3 2
blank in —^ x 6 ways ; he may draw 1 prize and 2 blanks in 3 x
C r i. • 2i

-^ ways ; the sum of these numbers is 64, which is the number of
1.2
ways in which A can win a prize. Also he can draw 3 tickets in
9.8.7

, or 84 ways : therefore A's chance of success = |4 = i|.1.2.3 -^
'

8? 21

B's chance of success is clearly \ ; therefore A's chance : B's

chance = if :
i = 16 : 7.

Or we might have reasoned thus : A will get all blanks in ——'—
1.2.3'

or 20 ways ; the chance of which is ||, or ^j ; therefore A's chance

of success = 1 — ^5_ _ ^6^

405. From the examples given it will be seen that the

solution of the easier kinds of questions in Probability

requires nothing more than a knowledge of the definition

of Probability, and the application of the laws of Permu-
tations and Combinations.

EXAMPLES XXXVI.

1. A bag contains 5 white, 7 black, and 4 red balls ; find the

chance of drawing : (a) One white ball
;

(b) Two white balls

;

(r) Three white balls
;

(d) One ball of each color
;

(e) One white,

two black, and three red balls.
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2. If four coins are tossed, find tlie chance that there should be

2 lieads and 2 tails.

3. One of two events must happen : given that the chance of the

one is two-thirds that of the other, find the odds in favor of the other.

4. Thirteen persons take their places at a round table. Show
that it is 5 to 1 against 2 particular persons sitting together.

5. There are three events A, B, C, one of which must, and only-

one can, happen ; the odds are 8 to 8 against A, 5 to 2 against B.

Find the odds against C.

6. A has 3 shares in a lottery containing 3 prizes and 9 blanks

;

B has 2 shares in a lottery containing 2 prizes and 6 blanks. Com-
pare their chances of success.

7. There are three works, one consisting of 3 volumes, one of 4,

and the other of 1 volume. They are placed on a shelf at random.
Prove that the chance that volumes of the same works are all together

IS TfO-

8. The letters forming the word Clifton are placed at random
in a row. What is the chance that the two vowels come together ?

9. In a hand at whist what is the chance that the four kings are

held by a specified player.

10. There are 4 dollars and 3 half-dollars placed at random in a

line. Show that the chance of the extreme coins being both half-

dollars is \.

MISCELLANEOUS EXAMPLES VI.

1. Simplify
.,

^-"
.^ + .

'-'' + ''
- ^

cfi -(b- c)^ b-^ - (c - a)- c^ - (« - by^

2. Extract the square root of

(i.) 4x'^ + 6x^ + ~\^-x^ + 15x + 25.

(ii. ) x8 - ^^ + 2 «4x4 + ?^ _ 2 «a-J + a^.

3. A number of 3 digits exceeds 25 times the sum of the digits

by 9 ; the middle digit increased by 3 is equal to the sum of the other

digits, and the unit digit increased by 6 is equal to twice the sum of •

the other 2 digits : find the number.

4. Find the value of

2 V^ + 3 Vf -(f V\^V'i)i\ V« - V24).

5. Solve (i.) 2 = ^^^+^+^^^^
V2 + x - V2 - ic

(ii. ) VSx-ll -H y/Wx = \/l2 x - 23.
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6. Solve
2(x + a)^3(.x + fi)^g^

X + b X -{- a

7. The sum of a certain number of terms of an A. P. is 45, and
the lirst and last of these terms are 1 and 17 respectively. Find the

number of terms and the common difference of the series.

8. Solve (i.) 2^-11^-1 + ^^-111 = 0.
^ ^ x-2 6 1-x

(ii.) Vl2 X - 5 + V3 .r. - 1 = V27 x - 2.

9. Find the value of the seventh term in the expansion of

(a + x)"^ when « = i, ic = |, « = 9.

10. A man starting from A at 11 o'clock passed the fourth mile-

stone at 11.30 and met another man (who started from B at 12) at

12.48; the second hian passed the fourth milestone from A at 1.40:

find the distance between A and B, and the second man's rate.

11. Show that x^ + 13 a^x > 5 ax2 + 9 a^, if x>a.

13. Extract the cube root of

44 .r3 + 63 x2 -f x^ + 27 + 6 x^ -}- 21 x^ -\- 54 x.

13. Solve (i.

)

X - ?/ = 3, (ii. ) 2 x^ - 9 x?/ + 9 ?/2 = 5,

x" + xy-\-7f = 93. 4 x2 - 10 xy + 11 ?/2 = 35.

14. Find a mean proportional between
v 1^ - 8 V- 3

(gO + Wy^

and the reciprocal of
16 a^b

15. Two vessels, one of which sails 2 miles an hour faster than the

other, start together upon voyages of 1680 and 1152 miles respec-

tively ; the slower vessel reaches its destination one day before the

other : how many miles per hour did the faster vessel sail?

16. Solve (i.) x6 = 8 + 7 x3.

(ii.) x2» + &2 _ c2 _ 2 bx'\

17. Two numbers are in the ratio 2:7; the numbers obtained by
adding 6 to each of the given numbers are in the duplicate ratio of 2 : 3.

Find the numbers.

18. Solve (i.) 2 5x2 - 2 6 = 4x + 52^;.

(n )
^ + 4

,
3x+10 ^ 2x + 3

^ '^ 2x + 3 2x X- 1

(iii.) Vx + 3 + Vx + 8 = \/4 X + 21.

(iv.) x2 -K xy + ?/ = 137,

y"^ + xy + x = 205.
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[4+y^_^|l^4^]
19. Simplify ' ,_^6 '

20. Find the sides of a rectangle the area of which is unaltered if its

length be increased by 2 feet while its breadth is diminished by 1 foot,

and which loses f of its area if its length be diminished by 2 feet and

its breadth by 4 feet.

21. The first term of a G. P. exceeds the second term by 1, and the

sum to infinity is 81 : find the series.

22. Find the number of permutations which can be made from all

the letters of the word 3Iississip2n.

23. Solve (i.) Vx + 2 + V4 .x + i - VOx + T = 0.

.... 2x-3
,

(11.)
,

= 2Vx-2-l.
Vx - 2 + 1

.....2,3 4
(ill.) - +

6 +VX \/x-2 Vx + 3

(iv.) \/x — a — \^x — b= Vb — a.

24. Find the condition that one root of ax^ -\- bx -\- c = shall be ii

times the other.

25. Find the value of x^ — 3x2 — 8x + 15 when x = 3 + i

26. Given log 648 = 2.81157, log 864 = 2.93651, find the logarithm

of 3 and of 5.

27. Two trains run, without stopping, over the same 36 miles of

rail. One of them travels 15 miles an hour faster than the other and

accomplishes the distance in 12 minutes less. Find the speeds of the

two trains.

28. Extract the square root of

9 x^ - 2 x^y + ^^ x2?/2 - 2 x^^ + 9 ^4.

29. Find, by logarithms, the value of

/ 15(.318)^\iT

30. Simplify
1+^*^"' - «"--

x-i «~ix — ax-i x — ((.

31. The men in a regiment can be arranged in a column twice as

deep as its breadth ; if the number be diminished by 206, the men can

be arranged in a hollow square three deep having the same number of
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men in each outer side of the square as tliere were in the depth of the

column ; how many men were there at first in the regiment ?

32. Solve (i.) 2x^ + orij + i/^ = 37,

8 x'-^ + 4 ic?/ + y-^ = 73.

(ii.) 27 x3 + ?/3 = 152,

3 x^y + xy'2 = 40.

33. Simplify 8^ + ^(2 x 4-5) - V2 ^ 4"' - (32)"^

34. A man bought a field the length of which was to its breadth as

8 to 5. The number of dollars that he paid for 1 acre was equal to the

number of rods in the length of the field ; and 13 times the number of

rods round the field equalled the number of dollars that it cost. Find
the length and breadth of the field.

35. Solve (i.) x"^ -\- xy + S y'^ = U -\- 2 ^2,
2 x2 + xy + 5 ?/2 = 24 + 2 ^2.

(ii.) 2x + 3?/ = 10,

5 x2 + X + ?/ = 4f

.

36. Find two numbers whose sum added to their product is 34,

and the sum of whose squares diminished by their sum is 42.

37. Find the sixth term in the expansion of each of the following

expressions

:

(i.) (« + 3&-2)T. (ii.) ^2a-^y. (iii.) (^^-^)'-

38. A varies directly as B and inversely as C ; A = | when B = ^-

and C = j\: find B when A = ^48 and C = ^75.

39. Solve (i.) Vx + 12 + ^x + 12 = 6.

(ii.) x^-^yVxy= 9,

2/2 + X Vxy = 18.

40. Form an equation whose roots shall be the arithmetic and
harmonic means between the roots of x"^ — px -{- g = 0.

z



CHAPTER XXXVII.

Binomial Theorem.

406. It may be shown by actual multiplication that

{a + lj)(a + c)(a + d){a + e)

= a^ -\-
(Jj

-\- c -\- d -\- e)ct? + {he + hd + 6e + cd + ce + de)a^

H- Q)cd + hce + 5cZe + cde)a + ^ccZe (1)

We may, however, write this result by inspection ; for the

complete product consists of the sum of a number of par-

tial products each of which is formed by multii)lying

together four letters, one being taken from each of the four

factors. If we examine the way in which the various par-

tial products are formed, we see that

(1) The term a^ is formed by taking the letter a out of

each of the factors.

(2) The terms involving a^ are formed by taking the

letter a out of any three factors, in every way possible, and
one of the letters 6, c, d, e, out of the remaining factor.

(3) The terms involving a^ are formed by taking the

letter a out of any tivo factors, in every way possible, and
two of the letters 6, c, d, e, out of the remaining factors.

(4) The terms involving a are formed by taking the letter

a out of any one factor, and three of the letters b, c, d, e,

out of the remaining factors.

(5) The term independent of a is the x^roduct of all the

letters b, c, d, e.

Ex. Find the value of (a - 2)(a + 3)(« - 5)(a + 9).

The product'

= a4-h(-2 + 3-5 + 9)a3 + (_ 6 + 10 - 18 - 15 + 27 - 45)a2

+ (30 _ 54 + 90 - 135)a -{ 270
= a4 + 6 (j3 _ 47 (j2 _ 09 (J + 270.

338
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407. If in equation (1) of the preceding article we sup-

pose c = d = e = b, we obtain

(a + by = a' + 4 a'b + 6 a'b' + 4 ab' + b'

.

We shall now employ tlie same method to prove a formula

known as the Binomial Theorem, by which any binomial of

the form a + 6 can be raised to any assigned positive inte-

gral power.

408. To find the expansion of (a + 6)'* when n is a. positive

integer.

Consider the expression

(ft + b)(a + c)(a + fO ••• (^^ + ^')?

the number of factors being n.

The expansion of this expression is the continued product

of the n factors, « + &, « + c, a-\- d, ••- a -\- k, and every

term in the expansion is of ?i dimensions, being a product

formed by multiplying together li letters, one taken from

each of these 7i factors.

The highest power of a is «**, and is formed by taking the

letter a from each of the n factors.

The terms involving a"~^ are formed by taking the letter

a from any n — 1 of the factors, and one of the letters

b, c, d, ••• k from the remaining factor; thus the coefficient

of a"~^ in the final- product is the sum of the letters

b, c, d, •" k; denote it by /Si.

The terms involving a"~^ are formed by taking the letter

a from any n — 2 of the factors, and tivo of the letters

b, c, d, "• k from the two remaining factors ; thus the coeffi-

cient of a'*~^ in the final product is the sum of the products

of the letters 6, c, d,--- k taken two at a time ; denote it by JS2.

And, generally, the terms involving a""'" are formed by

taking the letter a from any n — r of the factors, and r of

the letters 6, c, d, ••• k from the r remaining factors ; thus

the coefficient of a""'" in the final product is the sum of the

products of the letters b, c, d, -•• k taken r at a time ; denote

it by /S,..
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Tlie last term in tlie product is bed ••• k\ denote it by S„.

Hence (a + J>) {a + c)(rt + r?) • • • (a + k)

= a'' + SycC'-^ + /S/t"-- + ••• 4- S,a''-' + ••• 4-^„-i^t + ^n-

In Si the number of terms is ?? ; in /S'o the number of terms

is the same as the number of combinations of n things two
at a time; that is, "Co; in S^tJie number of terms is "C3; and

so on.

Now suppose €, d, • • • k, each equal to b ;
then Si becomes

"(7i6; ^Sa becomes "Os^^ ; aS's becomes "(73?>'^; and so on; thus

substituting for "Ci, "Co, ••• we obtain

(a + by = ft" + ncC'-'b ^ ^<^ - ^) ^^«-2^2

the series containing 7? + 1 terms.

This is the Binomial Theorem, and the expression on the

right side is said to be the expansion of (a + by.

409. The coefficients in the expansion of (a + by are very

conveniently expressed by the symbols "Oj, "Os, "O, ... "(7,i. We
shall, however, sometimes further abbreviate them by omit-

ting n, and writing Oi, Cs, Og, ... (7„. With this notation we
have

(a + by = a" + Cici^'-'b + CM^-'b'' + a,a"-7j" + .•• + (7„6".

If we write — b in the place of b, we obtain

(a - by = a" + 0"-X-6)+ aa"-'(- ?>)'

= a- - Cice-'b + (7/6"-2^2 _ c.,ce^-^y^ + ... 4.(_ l)"^,^^".

Thus the terms in the expansion of (a + 6)" and (a — by
are nu7nericaUy the same, but in (a — by they are alternately

positive and negative, and the last term is positive or nega-

tive according as n is even or odd.
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Ex. 1, Find the expansion of (k, + y/)^.

By the formula, the expansion

= «6 + <;(j^^5y ^ &C2ahf- + 603«V + *^C'4«2?/4 + ^^Cr^aif + 6C6?/«

= «6 + (v'lj + 15 a^- + 20 a^V^ + 1^ «V + a^s _|. ^o^

on calculating the values of ^C'l, 6(7^, 6(73^ ....

Ex. 2. Find the expansion of {a — 2x)'^.

(a - 2 x)7 = rt^ - 70ia6(2 x) + 702a5(2 x)2 -iC^a^l .r)-^ + ••• to 8 terms.

Now remembering that '^Gr = '"Cn-r after calculating the coefficients

up to 'Cs, the rest may be written down at once; for 7(7^ — 7(73.

7 C5 = "
C'2 ; and so on. Hence

(a -2 xy = a? -1 «6(2 a;) +^ cv'(2 x^ - 1-^-^ «t(2 ^0^ + ...

= a^ - 7 ««(2 .x) + 21 «5(2 x)2 - .35 a\2 rr)3 + 35 a^(2 x.y

-21a^(2xy^ -\-7a(2xf -{2xy
= a^ - 14 «% + 84 «5^;2 _ 28O a*x=5 + 560 a^x*

- 672 a%5 + 448 ax^ - 128 x^.

410. The (r 4- i)th or General Term. In the expansion of

(a -f b)", the coefficient of the second term is "(7i ; of the third

term is "Co ; of the fourth term is ""C^ ; and so on
; the suffix

in each term being one less than the number of the term to

Avhich it applies ; hence "(7^ is the coefficient of the (r + l)th

term. This is called the general term, because by giving to

r different numerical values any of the coefficients may be

found from "(7,.; and by giving to a and h their appropriate

indices any assigned term may be obtained. Thus the

(r + l)th term may be written

In applying this formula to any particular case, it should

be observed that the index of b is the same as the suffix of C,

and that the sum of the indices of a and b is n.

* See Art. 392, Cor,
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Ex. 1. Find the fifth term of (a + 2x3)17.

Here (r -j- 1)= 5, therefore

the required term ='^'^C4,a^^(2x^y

17.16. 15.14 ,« ,, i„= X 16 ai%i2
1.2.3.4

= 38080 ai%i2.

Ex. 2. Find the fourteenth term of (3 - a) is.

Here r + 1 = 14, therefore

the required term = ^^Cis(Sy\ - a)^^

= 15(72 x(-9ai3) [-Art. 395.]

= - 945 ai3.

411. Simplest Form of the Binomial Theorem. The most
convenient form of the binomial tlieorem is tlie expansion of

(1 + xy. This is obtained from the general formula of Art.

408, by writing 1 in the place of a, and x in the place of b.

Thus

(1 + xy = 1 + "Cio; + "Cx^ H h ''CX + h "C>''

, 71(71 — 1) ^= 1 4- nx + ^^^^ ^ .^'=^ + ••• + x^,

the general term being —^^ ^-^ r^—^
'-x"".

412. The expansion of a binomial may always be made to

depend upon the case in which the first term is unity ; thus

(a + hy=
I
a(l + ^\

I

"= a\l + c)' where c = —

Ex. Find the coefficient of ici^ ij^ the expansion of (x^ — 2xy^.

We have (x'^ - 2 x) i'^ = x^V 1 - ?y^

;

2X1*^

(x-^-2x)i'^ = x2Vl-?j

(2\ ^'^

1
] ,

w(
x)

have in thi.s expansion to seek the coefficient of the term which con-

tains —
X4

Hence the required coefficient = i'^C'4(— 2)'^

^ 10.0.8.7

1.2.3.4
X 16 = 3360.
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PROOF BY MATHEMATICAL INDUCTION.

413. By actual multiplication we obtain the following

identities :

(a + by = o? + 3a-& -^3ah- + W,

(a -\-by = a +4 a% + 6 a-b' + 4 air + b\

Selecting any one of these, and rewriting so as to exhibit

the laws of formation of exponents and coefficients, we have

(a + by = a' + ^a'-'b + ^ci'-'^' + ^4^^^'"'^'

+ ^;^;3;^
^^"^^(Art.216).

If these laws of formation hold for (a + by, n being any
positive integer, then

(a + by = a" + na^^-'b + ^^-^a"-^^^

Multiplying each side of the assumed identity by (a + b)

and combining terms, we obtain

(a + by+' = a'^+i + (n + l)«"^-> + ''^^' \^\
e'-'b'

^ .(» + m»^-l) ,„-.,3^....
. (2).

It will be seen that n in (1) is, in every instance, replaced

by {n H- 1) in (2). Hence if the theorem be true for any
value of 71, it will be true for the next higher value. We
have shown by multiplication that the theorem is true when
71 successively equals 2, 3, and 4; hence it is true when
n = 5, and so on indefinitely. The theorem is therefore

true for all positive integral values of 7i.
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414. lu the expansion

(a + h}" = a" + nce'-'b -f '^~^a»-'b'+ ••.

we observe that in any term

(1) The exponent of b, the second term of the binomial,

is one less than the number of the term from the first.

(2) The sum of the exponents is n.

(3) The last factor of the denominator of the coefficient

is the same as the exponent of the second term of the

binomiaL

(4) The last factor of the numerator of the coefficient

is the exponent of the Jii'st term of the binomial increased

byl.
Hence the (r + i)th or general term of (a + by is

7i(n-l)...(/^-r+l)

1.2.3...r
''

^'

Ex. Find the Gth term in the expansion of (2 a + by^.

Here n = 10, and r + 1 = 6,

We have
^^-^-^'^'^

(2 ayb^ = ^.2^7.6
.^ y^

= 252(2ya^b^ = 8064a^b\

Note. The student should observe that the coefficient contains

the same number of factors in both numerator and denominator.

EXAMPLES XXXVIL a

Expand the following binomials
;

1. (a: + 2)4.

2. (x + 3)5.

3. (a.+ x)"^.

4. (a - xy.

5. (\-2yy.
(-1) • - («-^) •

Write in simplest form :

. The 4th term of (1 + :

11. The Gth term of (2 - yy.

12. The 5th term of (a — 5 &)

13. The 15th term of (2x - ly^

10. The 4th term of (1 + x^^.
^^ ^^^^ ^^^^ ^^^^ ^^ /^_ iy\

12. The 5th term of (a - 5 &) ^ ^^ ,^,j^^ ^^^^ ^^^.^^ of f 3 x + ^V.
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16. Find the value of (x - V^)* +(x+ V'^)^-

17. Expand ( Vl - x^ + 1)5 -(Vl - x-^ - 1)5.

18. Find the coefficient of x^- in (x^ + 2xy^.

19. Find the coefficient of x in
f
x^ —— |

.

V 2x)

20. Find the term independent of x in
|
2 x^—

j
.

21. Find the coefficient of x--^ in
x2 2 \ 15

6 X--

415. Equal Coefficients. Li the expansion of (1 + x)'' the

coefficients of terms equidistant from the beginning and end

are equal.

The coefficient of the (r + l)th term from the beginning

is "C,.

The (r + l)th term from the end has n + 1 — (r + 1), or

n — r terms before it ; therefore counting from the begin-

ning it is the (u— r -\-l)th. term, and its coefficient is "C^ r^

which has been shown to be equal to "(7^ [Art. 395]. Hence
the proposition follows.

416. Greatest Coefficient. To find the greatest coefficient in

the expansion of (1 -f xy\

The coefficient of the general term of (1 -f xy is "(7^ ; and
we have only to find for what value of r this is greatest.

By Art. 401, when n is even, the greatest coefficient is

"(7„; when n is odd, it is "(7„_i, or "C„+i; these coefficients

being equal.

417. Greatest Term. To find the greatest term in the expan-

sion of (a + hy\

We have (a -}- hy = a'^ fl + -Y'

;

therefore, since a" multiplies every term in
[
1 + - j , it will

be sufficient to find the greatest term in this latter expansion.
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Let the rth and (r -f- l)th be any two consecutive terms.

The (r -|- l)th term is obtained by multiplying the ?*th term
n-r + l

_
b,

^^^^
. ^ /n + 1 _A

b

^^^
r a \ r Ja -"

?i. -I- 1
The factor —^!^ 1 decreases as r increases ; hence the

r

(/• + l)th term is not always greater than the rth term, but

only until f^^—t 1 )_ becomes equal to 1, or less than 1.

Now ^!i±i-l^^>l, solongas^-^ii-l>^^
\ r J a r b

thatis, ^i±i>^4-l, or &^±Al^>r
. . . (1).

If ^^

—

——^ be an integer, denote it by p ; then if r = n
a + b

^
"^ ^ ' ^

the multiplying factor becomes 1, and the (p + l)th term

is equal to the pth ; and these are greater than any other

term.

If y^ "*"
/ be not an integer, denote its integral part by

q; then the greatest value of r consistent with (1) is g;
hence the (q + l)th term is the greatest.

Since we are only concerned with the numerically greatest

term, the investigation will be the same for (a — by ; there-

fore in any numerical example it is unnecessary to consider

the sign of the second term of the binomial. Also it will

be found best to work each example independently of the

general formula.

Ex. Find the greatest term in the expansion of (1 + 4a;)^, when x
has the value \.

Denote the ?'th and (r+ l)th terms by 7^ and Tr+\ respectively ; then

r r 3

9 — r 4
hence Tr+i > Tr, so long as x -> 1

r 3

that is, 30 - 4 r > 3 r, or 30 > 7 r.
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The greatest value of r consistent with this is 5 ; hence the greatest

term is the sixth, and its value

= 8C5X (1)5 = 8(73 X (1)5 = AI34A

418. Sum of the Coefficients. To find the sum of the coeffi-

cients in the expansion of(l + xy\

In the identity

(1 -j- xy =1 + C\x + C^ + Cox' + . •
. + 0,0;"

;

put a; = 1 ; thus

= sum of the coefficients.

Cor. Ci+a + C34--- + a = 2«-l;

that is, the total number of combinations of n things taking

some or all of them at a time is 2" — 1. [See Art. 400.]

419. Sums of Coefficients equal. To jrrove that in the

exjxinsion of (1 + .!•)", the sum of the coefficients of the odd

terms is equcd to the sum of the coefficients of the even terms.

In the identity

(1 + xy = 1 + C,x + C,x' + Cx'^ + • • • + C„x%

put x = — l; thus

.-. 1 + a + c,+ - = c\ + c, + c, + ....

420. Expansion of Multinomials. The Binomial Theorem
may also be applied to expand expressions which contain

more than two terms.

Ex. Find the expansion oi {x^ +2x — ly.

Regarding 2 x — 1 as a single term, the expansion

= (a;2)3 + 3 (a:2)2(2 ^ - 1) + 3 x%2 x - l)"^ + (2 a; - 1)^

= x6 + 6 x5 + 9 X-* - 4 x3 - 9 x2 + 6 X - 1 , on reduction.

421. Binomial Theorem for Negative or Fractional Index.

For a full discussion of the Binomial Theorem when the

index is not restricted to positive integral values the student
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is referred to Chapter xly. It is there shown that when it-

is less than unity, the formula

n(:)i-l) ., nhi-l)(n-2) ,

(1 + xy = 1 + nx +—^^T^-^'-v- + ^

-^J^3
-^ of^ + -

is true for any value of n.

When n is negative or fractional the number of terms in

the expansion is unlimited, but in any particular case we
may write down as many terms as we please, or we may find

the coefficient of any assigned term.

Ex, 1. Expand (1 + x)~^ to four terms.

1-2 1.2- 3

= l-Sx + 6x^- 10x3 + ...

3

Ex. 2. Expand (4 + 3 x) - to four terms.

oTi ,
3 3x ,

3 9x2 1 27x3
,

"1

422. In finding the general term we must now use the

formula

7i(7i - l)(n - 2) '•' (n - r -\-l)

\r

^'^

written in full; for the symbol "0^ cannot be employed when
71 is fractional or negative.

Ex. 1. Find the general term in the expansion of (1 + x)^.

Tlie (r + l)th term zr K^ - 1X2 - 2) ••
(J: - r + 1) ^,

\r

^ l(- l)(-3)( -5) .-.(-2r + 3) ^,
2r[r
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The number of factors in the numerator is r, and r — 1 of these

are negative ; therefore, by taking — 1 out of each of these negative

factors, Y{Q may write the above expression

1.3.5...(2r-3)^,^
2r\r_

Ex. 2. Find the general term in the expansion of (1 — x)~^.

The (,• + 1 )th term = (- 3)(- 4)(- 5) ... (- 3 - , + 1) ^_,^y

^(_iy3-4-5.-(r + 2) ,^,

\r_

^ ^ 1.2.3...r

1-2

by removing like factors from the numerator and denominator.

423. The following expansions should be remembered

:

(1 - x)-^ = l-\-x-\-a? + Q(?+ ... + .t"" H .

(l-x)-'' = l^-2x^3x^-\-4.a? + ... + (r + 1) iV + ...

(1 _ x)-^ ^ 1 -^ 3a; H- 6a;^ + l^x'-" + ^'' ^ ^^%'^'^^ ^' + •••.

I . Zi

424. The following example illustrates a useful appli-

cation of the Binomial Theorem.

Ex. Find the cube root of 126 to 5 places of decimals.

(126)^ =(53 + 1)^:. 5^1 +iy

V 3 53 9 56 81 59 /

= 5+1.1-1.1 + ^.1-...
3 52 9 55^81 57

= 5+1. 2i_l._2^,J_.^
3

'

i02 9
'

105 81
'

107

r ,

.04 .00032
,

.0000128
= '+T g-^-si
= 5 + .013333 ^.000035 •.• + •.•

= 5.01329, to five places of decimals.
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EXAMPLES XXXVII. b.

In the following expansions find which is the greatest term :

1. (x-{- yy' when x = 4, )j = S. 4. (« - 4 6)i5 ^vhen a = 12, 1> = 2.

2. (x - ?/)-« when x = 9, ^/ = 4. 5. {1 x-\-2}/)^ when x=8, y= U.

3. (1 + xy when a; = f

.

6. (2 a; + 3)'* when x = |, ?i = 15.

7. In the expansion of (1 + o:y^ the coefficients of the (2 r + l)th

and (r + 5)th terms are eqnal : find r,

8. Find 7i when the coefficients of the 16th and 2Gth terms of

(1 + xy are equal.

9. Find the relation between r and n in order that the coefficients

of (r + 3)th and (2 r — 3)th terms of (1 + x)3» may be equal.

10. Find the coefficient of x"* in the expansion of
( x~ +

xj

11. Find the middle term of (1 + .x)2« in its simplest form.

12. Find the sum of the coefficients of (x + yy^.

13. Find the sum of the coefficients of (3 x + yy.

14. Find the rth term from the beginning and the rth term from

the end of (a + 2x)".

15. Expand (a^ + 2 « + 1)^ and (x2 - 4 x + 2)3.

Expand to four terms the following expressions :

16. (l + x)i 19. (l + 3x)-2. 22. (2+x)-3.
3

ri17. (1+x)*. 20. (l-x2)-3. 23. (l+2x)"

18. (l+x)i 21. (l+3x)-». 24. (a-2x)"2.

Write in simplest form :

25. The 5th term and the 10th term of (1 + x)"^.

26. The 3d term and the 11th term of (1 + 2x)"2".

27. The 4th term and the (r + l)th term of (1 + x)-^.

28. The 7th term and the (r + l)th term of (1 - x)^.

29. The (r + l)th term of (a - 6x)-i, and of (1 - nx)"".

Find to four places of decimals the value of

30. \/l22. 31. \/620. 32. v/31. 33. 1--a/99.
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Find the value of

34. (x + V2)*+(a^-V2)*- 36. (V2 + l)^-(V2-l)'•

35. (\/.r.2_rt2^a:)5-(\/x2-a^-a-)5. 37. (2- \/l-a;)6+(2+ VT^:)".

38. Find the middle term of fl-\-^y^.

39. Find the middle term of
j

1 - ^ j
.

40. Find the coefficient of x^^ in
[
x^ + '—- \ .

41. Find the coefficient of x^^ in {ax*^ — bxy.

I 1 \i^
42. Find the coefficients of x^- and x~i" " '

43. Find the two middle terms of i 3

(-i)
« - —

49. The (r+l)th term of (l-x)-*.

Write in simplest form

44. Tlie 8th term of (l + 2x)"^.

45. The 11th term of (l-2x3)"2 . 50. The (r+l)th term of (1 + x)^.

46. The 10th term of (l+3a2)"^A 51. The (r+l)th termof (l + x)'^'.

47. The 5th term of (3 a - 2 ?>)-i. 52. The 14th term of (2i'>-2'a:)^^.

48. The (r+l)thtermof {X-xy-. 53. The 7th termof (38 + 64x) ?^\



CHAPTER XXXVIII.

Logarithms.

425. Definition. The logarithm of any number to a

given base is the index of the power to which the base must
be raised in order to equal the given number. Thus if

a' = N, X is called the logarithm of JSf to the base a.

Examples. (1) Since 3"^ = 81, the logarithm of 81 to base 3 is 4,

(2) Since 10^ = 10, 102 ^ iqo, lO^ = 1000, •••

the natural numbers 1, 2, 3, ••• are respectively the logarithms of 10,

100, 1000, ••• to base 10.

426. The logarithm of N to base a is usually written

log^iV, so that the same meaning is expressed by the two

equations

a^ = ^; x = log« N.

Ex. Find the logarithm of 32^4 to base 2^2.
Let X be the required logarithm ; then, by definition,

(2v2)- = 32^4;
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PROPERTIES OF LOGARITHMS.

428. Logarithm of Unity. The logarithm of 1 is 0.

For a" = 1 for all values of a ; therefore log 1 = 0, what-

ever the base may be.

429. Logarithm of the Base. The logarithm of the base

itself is 1.

For a^ = a ; therefore log,, a = l.

430. Logarithm of Zero. The logarithm ofO, in any system

tvhose base is greater than unity, is 7}iinus infinity.

For a-=" = ^ = 0.

Also, since «+'" = co, the logarithm of + cc is + <X).

431. Logarithm of a Product. The logarithm of a product

is the sum of the logarithms of its factors.

Let 3IN be the product ; let a be the base of the system,

and suppose

X = log„ 3f, y = loga N;

so that a^ = M, a^ = N.

Thus the product MN= ce x a^ = a'+^

;

whence, by definition, log„MN =x-\- y = log„ M-{- log„ N.

Similarly, log, IINF = log, 31-\- log, JSf+ log, P;

and so on for any number of factors.

Ex. log 42 = log (2 X 3 X 7)= log 2 + log3 + log7.

432. Logarithm of a Quotient. The logarithm of a quotient

is the logarithm of the cUvidend minus the logarithm of the

divisor.

M
Let — be the fraction, and suppose

a.' = log, 3/, y = \og^N'^

so that a^ = M, cfT = JS'.

2a
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Thus the fraction — = — ^a"" ''•''.

N a"

M
whence, by definition, log„— = x — y = log„ 3f— log„ N.

Ex. log (21) = log y- = log 15 - log 7

= log (3 X 5) - log 7 = log 3 -I- log 5 - log 7.

433. Logarithm of a Power. The logarithm of a number
raised to any power, integral or fractional, is the logarithm of
the number multiplied by the index of the power.

Let loga (3/^) be required, and suppose

X = log„ 31, so that a"" = 31]

then 3P={ay = a^'\

whence, by definition, \o%^{M^) =x)x;

that is, log„ {M^) = p log„ 31.

Similarly, log„ {3P) = - log" 31.
r

Ex. Express the logarithm of -^^^ in terras of log a, log b, and logc,

3

log-^ = log^ = logJ - log (C562)

= I log a — (log c^ 4- log b'^) = I log a — 5 log c — 2 log b.

434. From the equation 10"= = N, it is evident that

common logarithms will not in general be integral, and that

they will not always be positive.

For instance, 3154 > 10^ and < 10^

;

.-. log 3154 = 3 + a fraction.

Again, .06 > 10"- and < 10-^

;

.-. log .06 = — 2 + a fraction.

Negative numbers have no common logarithms.

435. D?:fixitiox. The integral part of a logarithm is

called the characteristic, and the decimal part, when it is so

written that it is positive, is called the mantissa.

The characteristic of the logarithm of any number to the

base ID can be written by inspection, as we shall nQ^Y show.



LOGARITHMS. 355

436. The Characteristic of the Logarithm of Any Number

Greater than Unity. It is clear that a number with two

digits ill its integral part lies between 10^ and 10^ ; a num-

ber with three digits in its integral part lies between 10^

and 10'^; and so on. Hence a number with n digits in its

integral part lies between 10""^ and 10'\

Let ^ be a number whose integral part contains n digits

;

then
JCr -— i()(n-l)+ a fraction .

.-. log -^= (?i — 1) -f- a fraction.

Hence the characteristic is ?i — 1 ; that is, the characteris-

tic of the logarithm of a number greater than unity is less by

one than the number of digits in its integral part, and is

positive.

437. The Characteristic of the Logarithm of a Decimal Frac-

tion. A decimal with one cipher immediately after the

decimal point, such as .0324, being greater than .01 and less

than .1, lies between 10""^ and 10~^; a number with two

ciphers after the decimal point lies between 10~^ and 10~^

;

and so on. Hence a decimal fraction with n ciphers immedi-

atel}^ after the decimal point lies between 10"^'*+^' and 10~".

Let D be a decimal beginning with n ciphers ; then

jT) -— J^Q-(n+l)+ a fraction .

.-. log D == — {n 4- 1) + a fraction.

Hence the characteristic is — {n + 1) ; that is, the charac-

teristic of the logarithm of a decimcd fraction is greater by

unity than the number of ciphers immediately after the deci-

mcd point and is negative.

438. Advantages of Common Logarithms. Common loga-

rithms, because of the two great advantages of the base 10,

are in common use. These two advantages are as follows

:

(1) From the results already proved it is evident that the

characteristics can be written by inspection, so that only the

mantissse have to be registered in the Tables.
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(2) The mantissse are the same for the logarithms of all

numbers which have the same signijicaiit digits; so that it is

sufficient to tabulate the mantissse of the logarithms of

integers.

This proposition we proceed to prove.

439. Let N be any number, then since multiplying or

dividing by a power of 10 merely alters the position of the

decimal point without changing the sequence of figures, it

follows that ^x 10^, and ^-i-10^, where j) and q are any

integers, are numbers whose significant digits are the same

as those of JSf.

Now log(iV^x 10'')=:logiV^+ i:)loglO = logi\r-f 7> • (1).

Again, log (N -^ 10') =log]Sr-q log 10 = log J^-q . (2).

In (1) an integer is added to log N, and in (2) an integer

is subtracted from logiV; that is, the mantissa or decimal

portioyi of the logarithm remains unaltered.

In this and the three preceding articles the mantissse

have been supposed positive. In order to secure the advan-

tages of Briggs' system, we arrange our Avork so as always to

keep the mantissa positive, so that when the mantissa of any

logarithm has been taken from the Tables the characteristic

is xn-efixed with its appropriate sign, according to the rules

already given.

440. In the case of a negative logarithm the minus sign

is written over the characteristic, and not before it, to indi-

cate that the characteristic alone is negative, and not the

whole expression. Thus 4.30103, the logarithm of .0002, is

equivalent to — 4 + .30103, and must be distinguished from
— 4.30103, an expression in which both the integer and the

decimal are negative. In working with negative logarithms

an arithmetical artifice will sometimes be necessary in order

to make the mantissa positive. For instance, a result such

as — 3.G9897, in which the whole expression is negative,

may be transformed by subtracting 1 from the character-

istic and adding 1 to the mantissa. Thus,

- 3.69897 = - 4 +(1 - .69897)= 4.30103.
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Ex. 1. Required the logarithm of .0002432.

In Seven-Place Tables we find that 3859636 is the mantissa of log 2432

(the decimal point as well as the characteristic being omitted) ; and,

by Art. 437, the characteristic of the logarithm of the given number is

-4;
. •

. log . 0002432 = 4. 3859636.

This may be written 6.3859636 - 10.

Ex. 2. Find the value of V. 00000165, given

log 165 = 2.2174839, log 697424 = 5.8434968.

Let X denote the value required ; then

log x = log (.00000165)^ = ^ log (.00000165)= i-(^- 2 174839);

the mantissa of log. 00000165 being the same as that of log 165, and
the characteristic being prefixed by the rule.

Now K6.2174839)=K10 + 4.2174839) = 2.8434968

and .8434968 is the mantissa of log 697424 ; hence ic is a number con-

sisting of these same digits, but with one cipher after the decimal

point. [Art. 437.]

Thus X = .0097424.

441. Logarithms transformed from Base a to Base 6. Sup-

pose that the logarithms of all numbers to base a are known
and tabulated.

Let JV be any number whose logarithm to base b is

required.

Let y = logft^, so that ¥ = JSF;

that is, ylos,b = \og,N',

• y^-. 7Xlog,iV,
log« b

or logj,N=- -xlog„i\^ (1).
^ogab

Now since N and b are given, log„N and log„ b are knoAvn

from the Tables, and thus log^^may be found.

Hence to transform logarithms from base a to base b ive

midtiply them all by ;
this is a constant quantity, and

log„/->_

is given by the Tables ; it is known as the modulus.
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Cor. If in equation (1) we put a for N, we obtain

1 It 1
logj,a=- -xlog„« =

\og,b "" logjj'

.-. logja X log„6 = l.

442. Logarithms in Arithmetical Calculation. The fol-

lowing examples illustrate the utility of logarithms in

facilitating arithmetical calculation.

Ex. 1. Given log 3 = .4771213, find log {(2.7)3 x (.81)^ - (90)^.

= 3(log 3-3 - 1) + I (log 34 - 2) - J (log 32 + 1)

= (9 + ¥-i)log3-(3 + | + |)

= ^i\og3 -m = 4.6280766 - 5.85 = 2.7780766.

The student should notice that the logarithm of 5 and its powers

can always be obtained from log 2 ; thus

log 5 = log i# = log 10 - log 2 = 1 - log 2.

Ex. 2. Find the number of digits in S~b^^, given

log 2 = ..3010.300, log7 = .84.50080.

log (87516) = 16 log (7 X 125) = 16 (log 7 + 3 log 5)

= 16(log7 + 3-31og2)

= 16 X 2.9420080 = 47.072128

;

hence the number of digits is 48. [Art. 436.]

EXAMPLES XXXVIII. a.

1. Find the logarithms of V^^ and .03125 to base ^2, and 100

and .00001 to base .01.

2. Findthe value of log4 512, logs .0016, ^ogsio\, log49 34.3.

3. Write the numbers whose logarithms to bases 25, 5, .02, 1, — 4,

1.7, 1000, are i, - 2, - 3, 5, -1,2, - f respectively.

Simplify the expressions •

6. Find by in.spection the characteristics of the logarithms of 3174,

625.7, 3.502, .4, ..374, .000135, 23.22065.
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7. The mantissa of log 37203 is .5705780: write the logarithms of

37.203, .000037203, 372030000.

8. The logarithm of 7623 is 3.8821259: wi'ite the numbers whose

logarithms are .8821259, 6.8821259, 7.8821259.

Given log 2 = .3010300, log 3 = .4771213, log 7 = .8450980, find the

value of

9. log 729. 10. log 8400. 11. log. 256.

12. log 5. 832. 13. logv'392. 14. log. 3048.

15. Show that log \l + log ff 2- - 2 log ^ = log 2.

16. Find to six decimal places the value of

Incr 2 2 5 _ 2 \o(T JL.Q_ i Iqct 5_1_2

17. Simplify log {(10.8)^ x (.24)^ --(90)--}, and find its numerical

value.

18. Find the value of

log (\/i26 . Vm -- \/I008 . v/162).

19. Find tlie value of log J 588 x 768

^686 X 972

20. Find the number of digits in 42-*-.

/HI \ 1000

21. Show that I —
J

is greater than 100000.

22. How many ciphers are there between the decimal point and
/ •> \ 1000

le first significant digit in - ) ?
\3;

23. Find the value of \/. 01008, having given

log 398742 = 5.6006921.

24. Find the seventh root of .00792, having given

log 11 = 1.0413927 and log 500.977 = 2.6998179.

25. Find the value of 2 log|| + log J^s^- 3 log ff

.
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USE OF THE TABLE.

443. On pages 360-361 Ave give a four-place table con-

taining the mantissae of the common logarithms of all

integers from 100 to 1000.

444. To find the logarithm of a number.

(a) Suppose the number consists of three figures, as 56.7.

In the column headed JV find the first two significant

figures. On a line with these and in the column having at

the top the third figure will be found the mantissa. Thus
on a line with 56 and in the column headed 7 we find 7536.

To this, Avhich is the decimal part of the logarithm, prefix

the characteristic [Art. 436], and we have

log 56.7 = 1.7536.

(b) Since in common logarithms the mantissa remains

unchanged when the number is multiplied by an integral

power of 10, we change one or two-figure numbers into

three-figure numbers by addition of ciphers before looking

for the mantissas. The mantissa of log 5ij will be that of

560, the only change in the logarithm being in the charac-

teristic.

Thus log 560 = 2.7482,

log 56 = 1.7482.

In the same manner log 7 has for mantissa that of log 700.

log 700 = 2.8451,

log 7 = 0.8451.

(c) Suppose the logarithm of a number of more than

three figures, as 62543, is required. Since the number lies

between 62500 and 62600, its logarithm lies between their

logarithms. In the column headed N we find the first two
figures, 62 ; on a line with these and in the columns headed

5, and 6, Ave find the mantissee .7959 and .7966. Prefixing

the characteristic [Art. 436], Ave have

log 62000 = 4.7966,

log 62500 = 4.7959.
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Therefore while the number increases from 62500 to

62600, the logarithm increases .0007. Now our number is

j%\ of the way from 62500 to 62600 ; hence if to the log-

arithm of 62500 we add y\% of .0007, a nearly correct

logarithm of 62543 is obtained.

Thus log 62543 = 4.7959

.0003 correction

= 4.7962

(f?) Suppose the logarithm of a decimal, as .0005243, is

required. The number lies between .0005240 and .0005250.

In the column headed N we find the first two significant

figures, 52 ; on a line with these and in the columns headed

4, and 5, we find the mantissse .7193 and .7202. Prefixing

the characteristic [Art. 437], we have

log .0005250 = 4.7202

log .0005240 = 4.7193

differences .0000010 .0009

Now .0005243 is .0000003 greater than .0005240; hence

log .0005243 equals log .0005240 plus -M^^ or -^ of .0009^ i c> 1 .0000010 10

(the difference of logarithms)

;

that is, log .0005243 = 4.7193

.0003 (nearly)

= 4.7196

In practice negative characteristics are usually avoided by

adding them to 10 and writing — 10 after the logarithm.

Thus in the above example 4.7196 = 6.7196 - 10.

445. The increase in the logarithms on the same line, as

we pass from column to column, is called the tabular differ-

ence. In finding the logarithm of 62543, we assumed that

the differences of logarithms are proportional to the differ-

ences of their corresponding numbers, which gives us results

that are approximately correct. For greater accuracy we
must use tables of more places.
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446. To find the number corresponding to a logarithm.

(a) Suppose a logarithm, as 1.74G(), is given to find the

corresponding number.

Look in the table for the mantissa .7466. It is found in

the column headed 8 and on the line with 55 in the column

headed N. Therefore we take the figures ooS, and, as the

characteristic is 1, x^oint off two places, obtaining the num-
ber 55.8.

(b) Suppose a logarithm, as 3.7531, is given to find the

corresponding number.

The exact mantissa, .7531, is not found in the table, there-

fore take out the next larger, .7536, and the next smaller,

.7528, and retain the characteristic in arranging the work.

Thus, the number corresponding to 3.7536 is 5670

and the number corresponding to 3.7528 is 5660

differences .0008 10

Now the logarithm 3.7531 is .0003 greater than the loga-

rithm 3.7528, and a difference in logarithms of .0008 corre-

sponds to a difference in numbers of 10 ; therefore we should

increase the number corresponding to the logarithm 3.7528 by

.0003 3 p^,,
or - 01 10.

.0008 8

Thus the number corresponding to the logarithm

3.7531 = 5660

3.7 correction

= 5663.7

(c) Suppose a logarithm, as 8.8225 — 10 or 2.8225, is given

to find the corresponding number.

Take out the mantissie as in the previous example.

The number corresponding to 2.8228 is .0665 [Art. 437.]

The number corresponding to 2.8222 is .0664

differences .0006 .0001

Now tlie logarithm 2.8225 is .0003 greater than the loga-

rithm 2.8222, and a difference in logarithms of .0006 corre-

sponds to a difference in numbers of .0001 ; therefore we
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should increase the number corresponding to the logaritlim

2.8222 by ^^^^ or - of .0001.
•^ .0006 6

Thus

the number corresponding to the logarithm 2.8222 = .0664

the number corresponding to the logarithm 2.8225 = .0664

Correction, .00005

= .06645

EXAMPLES XXXVIII. b.

Find the common logarithms of the following :

1. 50. 4. .341. 7. 12345.

2. 203. 5. 0.045. 8. 0.010203.

3. 6.73. 6. 5265. 9. 354.076.

Find the numbers corresponding to the following common loga-

rithms :

10. 1.8156. 12. 4.0022. 14. 3.8441.

11. 2.1439. 13. 1.9131. 15. 7.4879-10.

447. Cologarithms. The logarithm of the reciprocal of a

number is called the cologarithm of that number.

Thus colog 210 = log 2io = log 1 - log 210.

Since log 1 = 0, we write it in the form 10 — 10 and then

subtract log 210, which gives

colog 210 = (10 - 2.3222)- 10 = 7.6778 - 10.

Hence

Rule. To find the cologarithm of a mnnher, subtract the

logarithm of the number from 10 and ivrite — 10 after the

result.

448. The advantage gained by the use of cologarithms is

the substitution of addition for subtraction.
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4.26
Ex. Find by use of logarithms the value of

7.42 X .058

log ^^ = log 4.20 + log— + log -^
° 7.42 X .058 ='7.42 .058

= log 4.26 + colog7.42 + colog .058

= .6294 +(9.1296 - 10)+ 1.2366

= 10.9956 - 10.

The number corresponding to this logarithm is 9.9.

In finding colog .058 we proceed as follows :

colog .058 = log^— = 10 - [log. 058] - 10 (Art. 447),
.0o8

= 10 - [8.7634 - 10] - 10 (Art. 437),

= 10 - 8.7634 + 10 - 10 = 1.2366.

449. Exponential Equations. Equations in which the un-

known quantity occurs as an exponent are called exponential

equations, and are readily solved by the aid of logarithms.

Ex. Find the value of x in 15== = 28,

Taking the logarithms of both sides of the equation, we have

log 15^ = log 28;
.-. X log 15 = log 28.

loo- 28 1.4472

log 15 1.1761
1.2305 +.

1.

EXAMPLES XXXVIII. c.

Find by use of logarithms :

24.051 X .02456 8. .00010101 x (7117.1)6.

.006705 X .0203
^

(285.42)1.^ x (5.672)8

^ 145.206 X (-7.564) ^^ ^ ^-^2 x ^=T24:89
• 448.1 x(-.2406)(- 47.85)

3 r742 8024)3
10. ^ 12.876 x V.068x (.005157)^

^3. (742.8024).^ ^/ 29.029 X (52.8iyx (.4)9

4. (-.0012045)_^.
^^ 3^+^ = 405.

5. V^^ X -y.002 X -^442.6
, ^c^ \{)^ ^^ = 9i •2x

^

(18)2 X .73 X (3.4562)^ 13. 123^-* x 18" 2x = 1458.

^ \/9.8149 X 80.80008 14. 2'= x 6^ - = 5-^ x 1^-'.

^8283 X (.0006412)4 18. 2-+y = 6^ 3- = 3 x 2y+\

7. 845692.1 x .845856. 16. 3i ^ y iz: 4 y,
2--2*-i = 33^'-*.

* Treat negative quantities occurring in logarithmic work as posi-

tive. Wlien the numerical result is obtained, determine its sign by the

ordinary rules of multiplication and division.



CHAPTER XXXIX.

Interest and Annuities.

450. Questions involving Simple Interest are easily solved

by the rules of Arithmetic ; but in Compound Interest the

calculations are often very laborious. We shall now show
how these arithmetical calculations may be simplified by
the aid of logarithms. Instead of taking as the rate of

interest the interest on $ 100 for one year, it will be found
more convenient to take the interest on $ 1 for one year.

If this be denoted by $ r, and the amount of $ 1 for 1 year

by $ E, we have Ii = l-{-r.

451. To find the interest and amount of a given sum in a

given time at compound interest.

Let P denote the principal, Ji the amount of $ 1 in one

year, n the number of years, I the interest, and 31 the

amount.

The amount of P at the end of the first year is PR-, and,

since this is the principal for the second year, the amount
at the end of the second year is PR x R or PR\ Similarly

the amount at the end of the third year is PR^, and so on

;

hence the amount in n years is PR"; that is,

M=PR";
and therefore /= P(R' - 1).

Ex. Find the amount of $ 100 in a hundred years, allowing com-

pound interest at the rate of 5 per cent, payable quarterly ; having

given

log2 = .3010300, logs = .4771213, log 14..3906 = 1.15808.

367
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The number of payments is 400. If M be the amount, we have

^3/ =100(fi)400;

.-. logil/ = log 100 + 400 (log 81 - log 80)

= 2 + 400 (4 logs - 1 - 3 log2)

= 2 + 400 (.0053952)= 4.15808
;

whence 3/= 14390. G.

Thus the amount is $ 14390.60.

Note. At simple interest the amount is $ 600.

452. To find the present value and discount of a given sum
due in a given time, allowing compound interest.

Let F be the given sum, V the present value, D the dis-

count, R the amount of $ 1 for one year, n the number of

years.

Since Fis the sum which, put out to interest at the present

time, \N\\\ in n years amount to P, ^ve have

P= FP";
.-. V=PE%

and I) = P-V=P(1- R-'^y

ANNUITIES.

453. An annuity is a fixed sum paid periodically under

certain stated conditions
;
the payment may be made either

once a year or at more frequent intervals. Unless it is

otherwise stated, we shall suppose the payments annual.

454. To find the amount of an annuity left unpaid for a

given number of years, allowing compound interest.

Let A be the annuity, R the amount of $ 1 for one year,

n the number of years, Jf the amount.

At the end of the first year A is due, and the amount of

this sum in the remaining n — 1 years is AR''~^ ; at the

end of the second year another A is due, and the amount of

this sum in the remaining ?t — 2 years is AR"'^; and so on.

.-. M= AR' ' + AR'^-'-^'"-\-AR' -\- AR + A
=zA(l + R-{- R^-\-"'to n terms) = ^:'^"~

R
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455. To find the present value of an annuity to continue for

a given number of years, allowing compound interest.

Let A be tlie annuity, R the amount of $ 1 in one year,

n the number of years, V the required present vahie.

The present vahie of A due in 1 year is AR~^
the present value of A due in 2 years is AR-'' :

tlie present value of A due in 3 years is AE~^; and so on.

[Art. 452.]

Now V is the sum of the present values of the different

payments

;

.-. V= AR-^ + AR-" + AR--^ H ton terms

= AR-^^-:^^=A^-^-'\
1-R-^ R-1

Note. This result may also be obtained by dividing the value of

i)/, given in Art. 454, by E'K [Art. 451.]

CoR. If we make n infinite we obtain for the present

value a perpetual annuity

R-1 r

EXAMPLES XXXIX.

1. If in the year 1600 a sura of f 1000 had been left to accumulate

for 300 years, find its amount in the year 1000, reckoning compound
interest at 4 per cent per annum. Given

log 104 = 2.0170333 and log 12885.5 = 4.10999.

2. Find in how many years a sum of money will amount to one

hundred times its value at 5^ per cent per annum compound interest.

Given log 1055 = 3.023.

3. Find the present value of $6000 due in 20 years, allowing com-

pound interest at 8 per cent per annum. Given

log2 = .30103, log3 = .47712, and log 12875 = 4.10975.

4. Find the amount of an annuity of $ 100 in 15 years, allowing

compound interest at 4 per cent per annum. Given

log 1.04 = .01703, and log 180075 = 5.25545.

5. AVhat is the present value of an annuity of $1000 due in 30

years, allowing compound interest at 5 per cent per annum ?

2b



CHAPTER XL.

LoiiTiNG Values and Vanishing Fkactions.

456. It will be convenient here to introduce a phraseology

and notation which the student will frequently meet with

in his mathematical reading.

457. Functions. An expression which involves any quan-

tity, as X, and whose value is dependent on that of x, is

called a function of x. Functions of x are usually denoted

by symbols of the form f(x), f'{x), F(x), cf>(x), and read
" the / function of x,'' " the /' function of a;,'' etc.

Thus the equation y =f(x) may be considered equivalent

to a statement that any change made in the value of x will

produce a consequent change in y, and vice versd. The
quantities x aud y are called variables, and are further dis-

tinguished as the independent variable and the dependent

variable.

An independent variable is a quantity which may have

any value we choose to assign to it, and the corresponding

dependent variable has its value determined as soon as the

value of the independent variable is known.

458. Definition. If?/ =f(x), and if when x approaches

a value a, the function f(x) can be made to differ by as little

as we please from a fixed quantity b, then b is called the

limit of y when x = a.

For instance, if S denote the sum of n terms of the series

l + l + i-|-i+ ...- then S =2-~'222 2"~

370
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Here S is a function of n, and -^-—^ can be made as small

as we please by increasing n\ that is, the limit of /S' is 2

when n is infinite. This may be expressed by writing

8 = 2. The sign = is sometimes used instead of the
00

words '^ approaches as a limit.-

459. We shall often have occasion to deal with expres-

sions consisting of a series of terms arranged according to

powers of some common letter, such as

where the coefficients a^, a^, ^9, «3'"are finite quantities

independent of x, and the number of terms may be limited

or unlimited.

It will therefore be convenient to discuss some proposi-

tions connected with the limiting values of such expressions

under certain conditions.

460. Limiting Value. The limit of the series

tto + a^x -f ag-'^^ + <:h^ + • •
•

when X is indefinitely diminished is o-q.

(i.) Suppose that the series consists of an infinite number
of terms.

Let h be the greatest of the coefficients a^, %, %, • • • ; and

let us denote the given series by «o + ^ '> then

S<hx + hx-+hx'+ ...;

and if x < 1, we have S <—^

—

1 — X

Thus when x is indefinitely diminished, S can be made
as small as we please ; hence the limit of the given series

is ao.

(ii.) If the series consists of a finite number of terms, S
is less than in the case we have considered, hence still more

is the proposition true,
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461. Value of Any Term. In the series

ctQ + a^x + a^^ -f- a^x^ + • • ,

by taking x small enough we may make any term as large as

tve please compared ivith the sum of all that folloiv it; and by

taking x large enough tve may make any term as large as we

please compared tvith the sum of all that jyrecede it.

(i.) The ratio of any term, as a„a;", to tlie sum of all that

follow it is

a„«"
^^

a„

When X is indefinitely small, the denominator can be made
as small as we please ; that is, the fraction can be made as

large as we please.

(ii.) Again, the ratio of the term a,^x'' to the sum of all

that precede it is

a„x"
-, or

where y = -
X

When X is indefinitely large, y is indefinitely small;

hence, as in the previous case, the fraction can be made as

large as we please.

462. The following particular form of the foregoing

proposition is very useful.

In the expression

a^ic" + a„_ia;"~^ + ••• -j-aiX + Oo?

consisting of a finite number of terms in descending powers

of X, by taking x small enough the last term ccq can be made
as large as we please compared with the sum of all the

terms that precede it, and by taking x large enough the first

term a,^x^ can be made as large as we please compared witli

the sum of all that follow it.

Ex. 1. By taking n large enough we can make the first term of

7i* — 5 ?i3 — 7 w + as large as we please compared with the sum of all
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the other terms ; that is, we may take the first term ii'^ as tlie equiva-

lent of the whole expression, with an error as small as we please pro-

vided n be taken large enough.

Ex. 2. Find the limit of '^ ^^ ~ ^ ^^^ ~ ^ when (1) x is infinite
; (2) x

5 x3 — 4 X + 8
IS zero.

(1) In the numerator and denominator we may disregard all terms

but the first ; hence

limit 3 x3 - 2 x2 - 4 ^ 3 a;3 ^ 3

a: = CO 5x3-4ic + 8 5x3 5*

(2) When x is indefinitely small we may disregard all terms hut the

— 4 1
last: hence the liniit is , or

'

8 2

VANISHING FRACTIONS.

463. Suppose it is required to find the limit of

x^ -\- ax — 2 ci?

x^ — a-

when x= a.

If we put x = a-\- h, then h will approach the value zero

as x approaches the value a.

Substituting a -\- h for x,

x' + ax - 2 ft" ^ 3 ah + h^ ^ 3a + h
^

x'-a"" 2ah + h' 2 a + h'

and when h is indefinitely small the limit of this expression

is f

.

There is, however, another way of regarding the question

;

for

x^ -i- ax — 2 a^ _(x — a) (x + 2 a) _ x-\-2a

x^ — ft- {x — ft) {x -f ft) X + ft

and if we non^ put x — a the value of the expression is |,

as before.

T p • J.1 • • a;^ H- fta; — 2 ft^ ,

it m the given expression —-— we put x — a
y? — cv-

before simplification, it will be found that it assumes the

form ^, the value of which is indeterminate [Art. 183] ; also

we see that it has this form in consequence of the factor
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X — a appearing in both numerator and denominator. Now
we cannot divide by a zero factor, but as long as x is not

absolutely equal to a, the factor x.— a may be removed, and

we then find that the nearer x approaches to the value a,

the nearer does the value of the fraction approximate to f

,

or in accordance with the definition of Art. 458,

-, .1 T .. n x^ -^ax — 2 a^ . 3
when X = a, the limit oi

^
is -•

x^ — a- 2

464. Vanishing Fractions. If /(^') and f(x) are two func-

tions of X, each of which becomes equal to zero for some

and is called a vanishing fraction.

Ex. 1. li x = 3, find the limit of

particular value a of x, the fraction ^-.^ takes the form §-,

x-^ — X"^ — ox

When x = 3, the expression reduces to the indeterminate form g ;

but by removing the factor x — 3 from numerator and denominator,

^x + 1
^j^g^^ ^

x2 4- 2 X + 1

which is therefore the required limit.

Ex. 2. The fraction y^ —Vx + a
^y^^Q^^Q^ ^^^^^^ ^^^

X — a

To find its limit, multiply numerator and denominator by the surd

conjugate to V3 x — a — Vx + a ; the fraction then becomes

(?, X - a) - (X -{- a) 2

(x — a) ( V3 X — a + Vx + a) \/3 x — a + Vx + a

whence by putting x = « we find that the limit is -

V2a

Ex. 3. The fraction ^^ becomes - when x = 1.

1-^x
To find its limit, put x = 1 -\- ?i, and expand by the Binomial

Theorem. Thus the fraction

1-(1 + /.)^
l-Cl+l/^-^A^ + .-V -.-r..

Now h = Q when x = l ; hence the required limit is f

.
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465. We shall now discuss some peculiarities which may
arise in the solution of a quadratic equation.

Let the equation be

ax^ -{- bx -\- c = 0.

If c := 0, then ao^ -\-bx = 0',

whence .t = 0, or
;

a

that is, one of the roots is zero and the other is finite.

If b = 0, the roots are equal in magnitude and opposite

in sign.

If a = 0, the equation reduces to bx -\- c = 0; and it

appears that in this case the quadratic furnishes only one

root, namely, But every quadratic equation has two

roots, and in order to discuss the value of the other root we
proceed as follows

:

Write - for x in the original equation and clear of frac-

y
tions

; thus, cy^ -\-by -\- a — 0.

Noiv put a = 0, and we have

cif -\-by = 0;

the solution of which is y = 0, or
; that is, 07=00, or

b

Hence, in any quadratic equation one root ivill become in-

finite if the coefficient of x^ becomes zero.

This is the form in which the result will be most fre-

quently met with in other branches of higher Mathematics,

but the student should notice that it is merely a convenient

abbreviation of the following fuller statement

:

In the equation ax^ -f 6a? + c = 0, if a is very small, one

root is very large, and as a is indefinitely diminished this

root becomes indefinitely great. In this case the finite root

approximates to — - as its limit.
b
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EXAMPLES XL.

Find the limits of the following expressions :

(1) when x=<x). (2) when x = 0.

. (2a;-3)(3-5x) ^ (x - 3)(2 - 5a;)(3x + 1)

7x-^-6x + 4 ' (2x-l)3

'

x* + 9 *
' 2 x^ - 1 2 x2

3 (3 + 2x3)(x-5)
e

(3-x)(x + 5)(2-7x)
(4x3-U)(l + x)"

'

(7x-l)(x+l)3

Find the limits of

10.

^'+1, whenx- 1. 8.
V^-^2«+Vx-



CHAPTER XLI.

CONVERGENCY AND DIVERGENCY OF SERIES.

466. We ha\'e, in Chapter xxxiv., defined a series as an

expression in wliich the successive terms are formed by

some regular law ; if the series terminates at some assigned

term, it is called a finite series ; if the number of terms is

unlimited, it is called an infinite series.

In the present chapter, we shall usually denote a series by
an expression of the form

Ui + no-^i's H h w„H

467. Definitions. Suppose that we have a series con-

sisting of n terms. The sum of the series will be a function

of n ; if n increases indefinitely, the sum either tends to

become equal to a certain finite Ihnit, or else it becomes

infinitely great.

An infinite series is said to be convergent when the sum of

the first n terms cannot numerically exceed some finite

quantity, however great n may be.

An infinite series is said to be divergent when the sum of

the first n terms can be made numerically greater than any

finite quantity by taking 7i sufficiently great.

TESTS FOR CONVERGENCY.

468. When the Sum of the First n Terms of a Given Series

is Known. If we can find the sura of the first n terms of a

given series, we may ascertain whether it is convergent or

divergent by examining whether the series remains finite, or

becomes infinite, when n is made indefinitely great

377
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For example, the sum of the first n terms of the series

l-\-x-\-x--{-x^-] is
1-x

If X is numerically less than 1, the sum approaches to the

finite limit , and the series is therefore convergent.
1 — X

If X is numerically greater than 1, the sum of the first n

terms is , and by taking n sufficiently great, this can
X — 1

be made greater than any finite quantity ; thus the series is

divergent.

If X = 1, the sum of the first n terms is n, and therefore

the series is divergent.

If x = — 1, the series becomes

1 -1 + 1-1 4-1-1 + •••.

The sum of an even number of terms is zero, while the

sum of an odd number of terms is 1 ; and thus the sum
oscillates between the values and 1. This series belongs

to a class which may be called oscillating or periodic conver-

gent series.

469. When the Sum of the First n Terms of a Given Series

is Unknown. There are many cases in which we have no

method of finding the sum of the first n terms of a series.

We proceed therefore to investigate rules by which we can

test tlie convergency or divergency of a given series without

effecting its summation.

470. First Test. An infinite series in ivhicli the terms are

alternately positive and negative is convergent if each term is

numerically less than the 2yreceding term.

Let the series be denoted by

Ui — U2 + ^3 — ?(4 + V.r, — Uc + • • •

where if j > u^ > '^^3 > n^ > ii^^ • . .

.
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The given series may be written in each of the following

forms

:

{u^-U2)-^(us-u^)-\-(ih-nQ)-{- .... (1),

iii—(u.2 — Us)-(u4 — ih) — (uQ — Uj)— . . . (2).

From (1) we see that the sum of any number of terms is

a positive quantity ; and from (2) that the sum of any num-

ber of terms is less than u^ ; hence the series is convergent.

For example, in the series

1—1-1-1—1-4-1—1-1-...

the terms are alternately positive and negative, and each

term is numerically less than the preceding one ; hence the

series is convergent.

471. Second Test. An infinite series in ivhich all the terms

are of the same sign is divergent if each term is greater than

some finite quantity, hoivever small.

For if each term is greater than some finite quantity a,

the sum of the first n terms is greater than na ; and this,

by taking n, sufficiently great, can be made to exceed any

finite quantity.

472. Before proceeding to investigate further tests of

convergency and divergency, we shall lay down two impor-

tant principles, which may almost be regarded as axioms.

I. If a series is convergent it will remain convergent, and

if divergent it will remain divergent, when we add or remove

mij finite number of its terms; for the sum of these terms

is a finite quantity.

II. If a series in which all the terms are positive is con-

vergent, then the series is convergent when some or all of

the terms are negative ;
for the sum is clearly greatest when

all the terms have the same sign.

We sliall suppose that all the terms are positive unless

the contrary is stated.
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473. Third Test. An mfinite series is convergent if from
and after some fixed term the rcUio of each term to the x>reced-

ing term is numerically less than some quantity which is itself

numerically less than unity.

Let the series beginning from the fixed term be denoted by

i<i + ^«2 + ^«3 + ?<4 H—

;

cand let — <r, — < r, - < r, ....

Ui no n^

where r < 1.

Then u^ -j- u^ -\- u^ -{- u^ -\- • • •

?6o ?fo Uo U. Uo Uo
1 +

Ui U2 Ui U^ U2 Ui )

that is, < ^
^

, since r < 1.

Hence the given series is convergent.

474. In the enunciation of the preceding article the

student should notice the significance of the words "from

and after a fixed term."

Consider the series

l-\-2x-\-3x^+4:X^-\ f-7ia?"-^-|-....

Here J^ = ^^^A + .^-V.;
^«-i n — 1 \ n — lj

and by taking ?i sufficiently large we can make this ratio

approximate to x as nearly as we please, and the ratio of

each term to the i)receding term will ultimately be x.

Hence if x<l, the series is convergent.

But the ratio ^^ will not be less than 1, until ~— < 1

;

rin-i n - 1

that is, until n >
1 — X

Here we have a case of a convergent series in which the

terms may increase up to a certain point, and then begin to
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decrease. For example, if x — ^^^, then = 100, and
1 — X

the terms do not begin to decrease until after the 100th

term.

475. Fourth Test. A71 infinite series in ivhich all the terms

are of the same sign is divergent iffrom and after some fixed

term the ratio of each term to the xyreceding term is greater

than unity, or equal to unity.

Let the fixed term be denoted by Wj. If the ratio is equal

to unity, each of the succeeding terms is equal to ?^i, and

the sum of n terms is equal to 7iUi', hence the series is

divergent.

If the ratio is greater than unity, each of the terms after

the fixed term is greater than u^, and the sum of n terms is

greater than nui ;
hence the series is divergent.

476. In the practical application of these tests, to avoid

having to ascertain the particular term after which each

term is greater or less than the preceding term, it is con-

venient to find the limit of when ?i is indefinitely

increased ; let this limit be denoted by I.

If /< 1, the series is convergent. [Art. 473.]

If Z > 1, the series is divergent. [Art. 475.]

If Z = 1, the series may be either convergent or divergent,

and a further test will be required ; for it may happen that

u—— < 1, Jnit continually approaching to 1 as its limit ivhen n

is indefinitely increased. In this case we cannot name any

finite quantity r which is itself less than 1 and yet greater

than I. Hence the test of Art. 473 fails. If, however,

u—^>1, but continually approaching to 1 as its limit, the

series is divergent by Art. 475.

u
We shall use "Lim—^" as an abbreviation of the words

u^.
u

*' the limit of —^ when n is infinite.''
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Ex. 1, Find whether the series whose nth term is -^ —^—
convergent or divergent.
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lies between the greatest and least of the fractions

— , -^, •••—

,

and is therefore ^finite quantity, L say

;

.'. Uy + W2 + «3 H h ^<n = ^K + '^^2 + -^3 H h ^n)-

Hence if one series is finite in value, so is the other ; if

one series is infinite in value, so is the other ; which proves

the proposition.

478. Auxiliary Series. The application of the principle

of the preceding article is very important, for by means of

it we can compare a given series with an auxilianj series

whose convergency or divergency has been already estab-

lished. The series discussed in the next article will fre-

quently be found useful as an auxiliary series.

479. The infinite series j; + 97,
+^ + j^ H ^^ always

divergent except when p is positive and greater than 1.

Case I. Let p > 1.

The first term is 1 ; the next two terms together are less

2 4
than — ; the following four terms together are less than — .

the following eight terms together are less than — ; and so

on. Hence the series is less than

1 -
2. 4 , 8_ ,.

^"^2^ "^4^"^ 8^"^" '

that is, less than a geometrical "progression whose common
9

ratio — is less than 1, since i^ > 1 ; hence the series is

convergent.

Case II. Let p = 1.

The series now becomes l + Y + i + i + i+**'-
The third and fourth terms together are greater than J or

J ; the following four terms together are greater than | or
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i
; the following eight terms together are greater than j\ or

i
; and so on. Hence the series is greater than

and is therefore divergent. [Art. 475.]

Case III. Let ^>< 1, or negative.

Each term is now greater than the corresponding term in

Case II., therefore the series is divergent.

Hence the series is always divergent except in the case

when }) is positive and greater than unity.

Ex. Prove that the series - + - + ^ + ••• + ^-^-~ + ••• is divergent.14 9 n-

Compare the given series with ! + - + -+••• H \- '•••

Thus if Un and r„ denote the «th terms of the given series and the

auxiliary series respectively, we have

Mn _ ?i + 1
. !_ » + !

.

Vn n^ n n

hence Lim— = 1. and therefore the two series are both convergent or

both divergent. But the auxiliaiy series is divergent, therefore also

the given series is divergent.

This completes the solution of Ex. 1. [Art. 476.]

480. Convergency of the Binomial Series. To show that

the expansion of (1 + .r/' by the Binonikd TJieorem is con-

vergent ivhen a: < 1.

Let u^, I'r^x represent the rth and (r + l)th terms of the

expansion; then

Vr^i _ n — r -{-

1

y, • r

AYhen r> n + 1, this ratio is negative ; that is, from this

point the terms are alternately positive and negative when x

is positive, and always of the same sign when x is negative.

Now when r is infinite, Lim -?^ = x numerically ; therefore

since x < 1 the series is convergent if all the terms are of

the same sign ; and therefore still more is it convergent when

some of the terms are positive and some negative. [Art. 472.]
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EXAMPLES XLI.

Find whether the following series are convergent or divergent

:

1. 1—1- +—i L^+...,
X X -\r a X -{- 2 a x + 3 a

X and a being positive quantities.

3. 1-
, .A .. +

X and y being positive (juantities.

4. ^^ + -J^ +^+^+....
1-2 2-3 3-4 4.5

5. -^ + _^ + -^ + ^!_+....
1-2 3. 45. 67-8

6 H-lL%§! + f4- 8- l+3x + 5x2+7x3 + 9:c4+
"^[2 "^13^14

""••

2 3 4 5
9 — + — + — + — +•.

7- Vi+Vf + Vf + V5 + -- ' 1^ 2i' 3p 4p

10. 1+? + ?+^+...+ '''

10 M-2 + 1

Note. For further information on the subject of Convergency and
Divergency of Series the reader may consult Hall & Knight's Higher

Algebra, Chapter xxi.



CHAPTER XLII.

Undetermined Coefficients.

FUNCTIONS OF FINITE DIMENSIONS.

481. In Art. 105 it was proved that if any rational inte-

gral function of x vanishes when x = a, it is divisible by

X — a.

Let jh^"" + jpia;"-^ + 2^2^'"'^ + • • • +Pn
be a rational integral function of x of n dimensions, which

vanishes when x is equal to each of the unequal quantities

tt], 02? f%? ••• f'/i-

Denote the function by /(x) ; then since f(x) is divisible

by X — cii, we have

f(x)= (x-a,)(p,x^'-'+ "•),

the quotient being of ?i — 1 dimensions.

Similarly, since f(x) is divisible by x — a.,, we have

^)o.i-"-^ + ••• = G^'
— «2)(poa^""- +•••)?

the quotient being of u — 2 dimensions ; and

Po^"-2 4_ ... _ (.y _ a3)(poa?"-3 ^ ...
)_

Proceeding in this way, we shall finally obtain after n

divisions

/(•^') =i>oO^' - (h)(x - ^to)(.c - «,) .••(.-«- o„).

482. If a rational integral function of n dimensions vanishes

for more than n values of the variable, the coefficient of each

power of the variable must be zero.

Let the function be denoted by f(x), where

f(x) = pox^' + p,x'^ ' + i)o.«"-2 + • • • + Pn ;

386
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and suppose that f(^x) vanishes when x is equal to each of

the unequal values «!, cto, O3, • • • «„ ; then

f(x)= 2h{^ — cti) (x — a2)(x — a,) -'-(x- a„).

Let c be another value of x which makes f{x) vanish; then

since /(c) = 0, we have

Po(c - cii) (c - as) (c - as) ••• (c - a,) = ;

and therefore 2>o = 0? since, by hypothesis, none of the other

factors is equal to zero. Hence f{x) reduces to

By hypothesis this expression vanishes for more than n

values of x, and therefore 2^1 = 0-

In a similar manner we may show that each of the coeffi-

cients 2h, Ihr
• '

' Pn niust be equal to zero.

This result may also be enunciated as follows

:

If a rational integral function of n dimensions vanishes for

ynore than n values of the variable, it must vanish for every

value_ of the variable.

Cor. If the function f{x) vanishes for more than n values

of .1", the equation f(x)= has more than n roots.

Hence also, if an equation of n dimensions has more than

n roots it is an identity.

Ex. Prove that

(x — b)(x — c) (x — c) (x — a) (x — a) (x — ?>)_-,

(a - &)(« -cy {b- c)(& -a)'^ (c- a){c -b)~ '

This equation is of two dimensions, and it is evidently satisfied by
each of the three values a, b, c ; hence it is an identity.

483. If two rational integral functions of n dimensions are

equal for more than n values of the variable, they are equal

for every value of the variable.

Suppose that the two functions

2)oX'' +Pia;"-i +P2X''-" H hp„,

goo^" + gi^"-' + g2^"-' + ••• + qn,

are equal for more than n values of x ; then the expression

(i^o - Qo)
^'* 4- (Pi - qi) x^'-' + (2h - q2) x^-' + • • • + (p„ - qn)
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vanishes for more than n values of x; and therefore, by the

j)recedmg article,

Po-go = (^, Pi-qi = (^, P2-q2 = ^,'-'i\-Qn = 0;

that is, 2h = qo, Pi = (Ji, i>2 = 92,'" Pn = q^
Hence the two expressions are identical, and therefore are

equal for every value of the variable. Thus

If tii'O rational intec/ral functions are identically eqncd, we
may equate the coefficients of the like powers of the variable.

CoR. This proposition still holds if one of the functions

is of lower dimensions than the other. For instance, if

Po-c" +pi.x'*-i +p2*'«"~^ +Pz^''~" H yPn

= ^2-'^""^ + gs^""^ H \-qn,

we have only to suppose that in the above investigation

q^ ==0, gi = 0, and then we obtain

P^ = 0, 2h = 0, P2 = qo, Ih = qs, •"Pn = q,r

484. The theorem established in the preceding article

for functions of finite dimensions is usually referred to as

the Principle of Undetermined Coefficients. The application

of this principle is illustrated in the following examples.

Ex. 1. Find the sum of the series

1.2 + 2.3 + 3.4 4---+ n(n + l).

Assume that

1.2+ 2. 3+ 3. 4 + ... + n(n+l)=^+^«+CH2+ l>«H^H*+-, (1)

where A, B, C, D, E, '• are quantities independent of n, whose values

have to be determined. Change n into n + 1 ; then

1.2 + 2.3 +... + «(?i + l) + (n + l)(n + 2)

= A-\- Bin + 1) + C(n + l)--^ + />(n + 1)3 + EOi + 1)^ +.... (2)

By subtracting (1) from (2),

(n + l)(n + 2) = J5 + (7(2 n + 1) + 2>(3 n'^ + 3 7i + 1)

+ £'(47i3 + Gn2 + 4n + 1) + ....

This equation being true for all integral values of w, the coefficients

of the respective powers of n on each side must be equal ; thus E and
all succeeding coefficients must be equal to zero, and

32)=1; 3Z) + 2C = 3; D -h C -\- B = 2
;

whence I> = h C=l, -B = |.
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2 » 1

Hence the sum = A +^ -\- n- + -lA
o o

To find A, put 71 = I ; the series then reduces to its first term, and

2 = ^ + 2, or ^ = 0.

Hence 1 -2 + 2 • 3 + 3 • 4 + ... + ?K« + 1)= ^ 'K« + 1)(h + 2).

Note. It will be seen from this example that when the nth term is

a rational integral function of /?, it is sufficient to assume for the sum
a function of n which is of one dimension higher than the nth term of

the series.

Ex. 2. Find the conditions that x^ + px^ -\- qx + r may be divisible

by
x^ + ax + b.

The quotient will contain two terms ; namely, x and a term inde-

pendent of X. Hence, we assume

x^ + px"^ + qx + r = (x + k) (.x^ ^ ax -{- b).

Equating the coefficients of the like powers of x, we have

^• + ct = j>, ak + b = g, kb = r.

From the last equation ^• = - ; hence by substitution we obtain

T-^a-p, and '^-\-b = q\
b b

that is, r = b (p — a), and ar = b(q — b);

which are the conditions required.

EXAMPLES XLII. a.

Find by the method of Undetermined Coefficients the sum of

1. 1- + 3^ + 52 + 72 + ... to n terms.

2. 1 . 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 + ••• to M terms.

3. 1 . 22 + 2 . 32 + 3 . 42 + 4 . 52 + ••• to ?i terms.

4. 13 + 33 + 53 + 73 + ... to 71 terms.

5. l-i + 2-1 + 3^ + 44 + ... to n terms.

6. Find the condition that x^ — Spx + 2q may be divisible by a

factor of the form x2 + 2 «x + a^.

7. Find the conditions that ax^ + bx^ + ex -\- d may be a perfect

cube.
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8. Find the conditions that cfix^ + h'jfl + cx^ -\- dx -\-p may be a
perfect square.

9. Prove the identity

a^(x - b)(x - c) b'^jx -c)(x- a) c'^jx - a)(x - b) _ ^

{a-b){a-c) "^ ib-c)(b-a) "^ {c-a)(c-b)
~^'

FUNCTIONS OF INFINITE DIMENSIONS.

485. If the infinite series Aq + Oi-*' + ^2-*'" + f^^x^ + • • • is

equal to zero for every finite value of x for which the series

is convergent, then each coefiicient must be equal to zero identi-

cally.

Let the series be denoted by S, and let S^ stand for the

expression a, + a^x -\- cigX^ + •••
; then /S = oto + ^'-^i? 3,nd

therefore, by hypothesis, clq -\- xSi = for all finite values of

X. But since S is convergent, Si cannot exceed some finite

limit ; therefore by taking x small enough, xSi may be made
as small as we please. In this case the limit of S is a^ ; but

S is ahuays zero, therefore a^ must be equal to zero identi-

cally.

Eemoving the term ciq, we have xSi = for all finite values

of X ; that is, tti + a^x -\- a^x^ + • • • vanishes for all finite

values of x.

Similarly, we may prove in succession that each of the

coefficients ai, a.^, a^, •••is equal to zero identically.

486. If two infinite series are convergent and equal to one

another for every finite value of the variable, the coefficients of

like powers of the variable in the two series are equal.

Suppose that the tAvo series are denoted by

tto + ctiX + a^x' + a^x^ + • • •

and Aq -f AiX + AzX^ + A^o^ + • • •

;

then the expression

tto -A +(«! - Ai)x-\-(a.2 - A.?}x^-^(as - A^jx^ + •••
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vanishes for all values of x within the assigned limits;

therefore by the last article

cIq — A^ = 0, «! — ^li = 0, ao — A2 = 0, % — ^3 = 0, • • •,

that is, ciq = Aq, a^ = Ai, a.2 = A^, a^ = A^, • • •

;

hence the coefficients of like poioers of the variable are equal,

which proves the proposition.

EXPANSION OF FRACTIONS INTO SERIES.

487. Expand '-^—^ in a series of ascending powers

of X.

Let

1 -\- X— X

2 + x

1 -[- X — X
-^ = A-^Bx^Cx^ + Dx^

where A, B, C, D, •••, are constants whose values are to be

determined ; then

2-{-x' = A(l + x- x')+ Bx(l + ^ - a^2^^+ Cx\l + x- x^)

-hDx\l + x-x')-j-...

-hB
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Ex. Expand in a series of ascending powers of x.
2 x2 - 3 5C3

Dividing cc", of the first term of the numerator, by cc^, of the first

term of the denominator, we obtain x-'^ for the first term of the ex-

pansion ; therefore we assume

then

Equating the coefficients of like powers of x, we liave

^ = 1; 2^-3^ = 0, 20-3 5 = 0, 2Z>-3C = 0,

2a;2_3x3
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Equating the coefficients of like powers of x, we have

A = l', 2AB=1, B'-{-2AC=0, 2AD + 2BC = 0,

... B = i; ... C=-i', ... D = ^\',

C' + 2BD-h2AE = 0;

• • ^ — 128 5

X x^
,

a^ 5x* , .

thus Vl+ I- = 1+--- +—

-

2 8 16 128

Note, The expansion can be readily effected by the use of the

Binomial Theorem [Art. 421 J.

EXAMPLES XLII. c.

Expand the following expressions to four terms :

1. Vl -X. 3. Va2 - x^. 6. (1 + x')^

2. Va - x. 4. v'2 + x. 6. (1 + x + x^)^.

REVERSION OF SERIES.

490. To revert a series y = ax + bx- -{- cx^ -\- ... is to ex-

press X in a series of ascending powers of y.

Revert the series

y = x-2x^-\-3x^-4.x'-\-"- . . . . (1).

Assume x = Ay-{- By^ + Cy^ + Dy* + • • •

.

Substituting in this equation the value of y as given in

(1), we have

x=A(x-2x~+3x^-4:x'+ ...) =A{x -2x'-^3x^-Ax'-^'-.)

-{-Blx-2x'+3a^-4.x'-\- '"y=B(x''-{-4.x'-4:X^-i-6x'-\-'.')

-{•C{x-2x'^3a^-4.x'+ -y=C(:x'-6x'
)

+ Dlx-2x^-\-3x^-4tx'-{- ...y=D(:x'-^ ...
)

Equating the coefficients of like powers of x,

A = l; B-2A = 0, C-AB + 3A = 0,

.'. B = 2; .'.0 = 5;

D-6C-\-10B-4,A = 0,

... B = U.

Hence x = y + 2 y'- -^ 5 y' -\- U y' -\- ....
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491. If the series he y = 1 + 2x -^3x^ + 4.x^ -\- ...

put ?/ - 1 = 2;

;

then z = 2x-^3x^ + 4.of-{-'-'.

Assume x= Az -{- Bz^ -\- Cz^ + -" and complete the work

as in Art. 490 after which replace z by its value y — 1-

EXAMPLES XLII. d.

Revert each of the following aeries to four terms :

1. ,^ = ^, + a:2 + a:3 + a;4 + .... 4. 2/= l+a:+ 1+|+|^+ ....

2. y=x+ 'ix^-\-bx^-\-l:id^+ ••'
. ^3 ^5 n,^

5. y = x — — ^ \- •"•

/y2 /).3 /V.4 3 5 7
3 ^/ — ;;C— —-4-— — + •'•

2 4 8
*

6. y=ax-^hx:-+ cx^+ dx'^+ — .

PARTIAL FRACTIONS.

492. A group of fractions connected by the signs of

addition and subtraction is reduced to a more simple form

by being collected into one single fraction whose denomina-

tor is the lowest common denominator of the given frac-

tions. But the converse process of separating a fraction into

a group of simpler, or partial, fractions is often required.

For example, if we wish to expand -—^ —- in a series1— 4i« + 3af

of ascending powers of x, we might use the method of Art.

487, and so obtain as many terms as we i)lease. But if we
wish to find the general term of the series, this method is

inapplicable, and it is simpler to express the given fraction

1 2
in the equivalent form \- -—^— Each of the ex-

1 — .'K 1 — 3 .T

pressions (1 — x)~^ and (1 — Zx)~^ can now be expanded

by the Binomial Theorem, and the general term obtained.

493. We shall now give some examples illustrating the

decomposition of a rational fraction into partial fractions.

For a fuller discussion of the subject the reader is referred

to treatises on Higher Algebra, or the Integral Calculus.
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In these works it is proved that any rational fraction may
be resolved into a series of partial fractions ; and that

(1) To any factor of the first degree, as x — a, in the

denominator there corresponds a partial fraction of the

. A
lorm

X — a

(2) To any factor of the first degree, as x — b, occurring

71 times in the denominator there corresponds a series of

n partial fractions of the form

B C . R
x — b (;^• — by (x - by

(3) To any quadratic factors, as x^ + j^x + q, in the de-

nominator there corresponds a partial fraction of the form
Ax-{-B

X- +2^^+ Q

(4) To any quadratic factor, as x"^ + px + q, occurring 7i

times in the denominator there corresponds a series of

71 partial fractions of the form

Ax + B Cx + D Ex + S
(x^ -\-px + q) (^" + P^ + gy (.'«" + l^'-c + qy

Here the quantities A, B, C, D, ••• R, S, are all inde-

pendent of x.

We shall make use of these results in the examples that

follow.
5x — 11

Ex. 1. Separate into partial fractions.

Since the denominator 2ocr -\- x — Q = {x -\-
'2) (2 x — 3), we assume

5x-ll ^ A B
2 x- + X - 6

~
X + 2 2 X - 3'

where A and B are quantities independent of x whose values have to

be determined.

Clearing of fractions,

5 X - 11 = ^1 (2 X - 3) + ^(x + 2)

.

Since this equation is identically true, we may equate coefficients of

like powers of x ; thus

2^ + J3=5, -3^ + 2i? = -ll;
whence ^ = 3, B = — \.

5X-11 ^ 3 1__^
"2x2 + x-6"x + 2 2x-3*
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Ex. 2. Kesolve
''^^^' "^ ^^

into partial fractions.

Assume

(x — a){x + h)

mx + n A , B
{x — a){x -\-h) X — a x + h

.-. mx+ n = A(x +h)+ B{x- a) . . . . (1).

We might now equate coefficients and find the values of A and B,

but it is simpler to proceed in the following manner :

Since A and B are independent of x, we may give to x any value

we please.

In (1) put x — a =0, ov x = a\ then

. _ ma + 71
.

a + 6
'

puttmg X + b = 0, or X = - b, B = —

•

a -^ h

mx + n

(x — a){x + b)

23 X- 11x2

1 /ma + ^i
I

mb — n \

a -\- b\ X — a x + h /

Ex 3. Resolve —^^-^—^^^ into partial fractions.
(2x- 1)(9- x2)

. 23x-llx2 A , B . C ,,>..
^^^^"^

%2x-l)(3 + x)(3-x) = 273T + 3T^'^33^ *
^'^ '

.-. 23x - 11 x'-^ = ^ (3 + x)(3 - X) + B(2x - 1)(3 - x)

+ 0(2x-l)(3+x).

By equating the coefficients of like powers of x, or putting in

succession 2 x - 1 = 0, 3 + x = 0, 3 - x = 0, we find that

^=1, ^ = 4, C = -l.

23x-llx2 1 ^4 1

"'
(2x-l)(9-x--2) 2x-l 3 + x 3-x

Ex 4. Resolve — + x - 2— .^^^.^ partial fractions.
(x-2)'-^(l -2x)

Assume ^^'^t^"^ ^^,^ +-^+ ^
(x-2)--2(l -2x) l-2x x-2 (x-2)'-2

.-. 3x2 + x-2 =.l(x-2)2 + J3(l-2x)(x-2) + 0(l-2x).

Let 1 - 2 X = 0, then A = - I;

let X - 2 = 0, then C = -4.

To find B, equate the coefficients of x'^ ; thus

3 =
3x2 + a: -2

(X - 2)2(1 - 2 X) 3(1 - 2 X) 3(x - 2) (x - 2)2
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42 — 19 'ic

Ex. 5. Resolve—•
'- into partial fractions.

(x2 + 1) (X - 4)

Assume' 42-19x ^Ax±B^ -

(x2 + 1) (X - 4)
~

a;2 + 1 x - 4
'

.-. 42-19x=(^x + ^)(ic-4)+ (7(^2+1).

Let X = 4, then O = — 2
;

equating coefficients of x'^, = A + C, and A = 2;

equating the absolute terras, 42 = — 4 i> + (7, and i? = — 11,

42 - 19 a; _ 2 x - 11 _ 2
"

(x^ + 1) (x - 4)
~

x^ + 1 X - 4"

494. In all the preceding examples the numerator has

been of lower dimensions than the denominator; if this is

not the case, we divide the numerator by the denominator

until a remainder is obtained which is of lower dimensions

than the denominator.

6 x^ 4- 5 x^ 7
Ex. Resolve — into partial fractions.

3x2-2x-l ^

By division,

6x3+5x2-7^2x + 3+ 8X-4
.

3x2_2x-l 3x2-2x-l
, 8x-4 5 , 1

and -— = h3x2-2x-l 3x + l x-1
^._
6x3+5x2-7^,^^3^ 5

3x2_2x-l 3x + l x-1

495. The General Term. We shall now explain how reso-

lution into partial fractions may be used to facilitate the

expansion of a rational fraction in ascending powers of a;.

Ex. 1. Find the general term of ——-— when expanded in"" l-3x + 2x2

a series of ascending powers of x.

By Ex. 1, Art. 493, we have

1-tA^ = __I ^ = 7(1-2 x)-i - 6(1 - x)-i
l-3x + 2x2l-2xl-x ^

^ ^ ^

= 7[l+(2x) + (2x)2+... + (2x)'-+...]

-6(1 +X + X2+...+ X'- +...).

Hence the (r + l)th, or general term of the expansion, is

7(2x)'--6x'- or [7(2)'- - 6]x'-.
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Ex. 2. Find the general term of — -^-- when expanded
(x - 2)"^(1 - 2x)

in a series of ascending powers of x.

By Ex. 4, Art. 493, we have

3a;2 + x-2 _ 1 5 4

(X - 2)2(1 -2x) 3(1 - 2 a;) 3(x - 2) (x - 2)2

1 5 ^_
3(1 -2 a;) 3(2 - a;) (2 - a:)215 4

3(l-2x)
Gll-fi 4(l-^V

-|(—)-^-^(-2)-^-(^-^)'^
.

= -i[l+(2x) + (2x)2+.-. + (2x)'-+...]

-[l0(|) + 3g.... + (,..X)(^-)%...].

Hence the (r + l)th or general term of the expansion is

V 3 6 2'- 2r
I

496. The following example sufficiently illustrates the

method to be pursued when the denominator contains a

quadratic factor.

Ex. Expand i-^ in ascending powers of x and find
(1+X)(1+X2)

the general term.

Assume 7+x _ A Bx + O
,^^^"""^^

(l + x)(l + x2)-l + x+ l+x2 '

.-. 7 + x = ^(l + x2) + (5x+ C)(l + x).

Let 1 + X = 0, then ^ = 3
;

equating the absolute terms, 1 = A -\- C, whence (7 = 4;

equating the coefficients of x2, = ^ + J?, whence B = — S.

7+x _ 3 4-3x
(1 + X) (1 + a;2)

~
1 + X 1 + x2

= 3(1 + x)-i +(4 - 3x)(l + x2)"i

= 3{1 - X + x2 + (- l)pxp +•••}

+ (4 -3x){l-x2 + x4-...+ (-l)i'x2i' +...}.
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To find the coefficient of x'"

;

(1) If r is even, the coefficient of x*" in the second series is

4(_ 1)2; therefore in the expansion the coefficient of x*" is 3+4( — 1)2.

(2) If r is odd, the coefficient of x*" in the second series is

r-l r+l

— 3(— 1) 2
, and the required coefficient is 3(— 1) 2 — 3.

EXAMPLES XLII. e.

Resolve into partial fractions :

46 + 13X 3 1 + 3 X + 2 x2

r2x2-llx-15* (1 -2x)(l -x2)"

26 x2 + 208 X



CHAPTER XLIII.

CoxTixrED Fractions.

497. An expression of the form a H ^ is called

c-f-
,

e -r •••

a continued fraction ; here the letters a, b. o, • • • may denote

any quantities whatever, but for the present we shall only

consider the simpler form cii H
:j

. where a^, a.2,

a^,. ••• are positive integers. This will be usually written in

the more compact form

«i + -••••

498. When the number of quotients a.i, a^ a^, ••• is finite

the continued fraction is said to be terminating ; if the

number of quotients is unlimited the fraction is called an

infinite continued fraction.

It is possible to reduce every terminating continued frac-

tion to an ordinary fraction by simplif\-ing the fractions in

succession beginning from the lowest.

499. To convert a given fraction into a continued fraction.

Let — be the given fraction ; divide m by n ; let a^ be the

quotient and p the remainder ; thus

m p 1- = «i + - = «! + -

;

n n n

400
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divide n by j^i 1^^ ^-2 t'e the quotient and q the remainder

;

thus
^

.
^ ,1.-= a., + -=a2 4--;

p - p p

divide p by 5. let Or, be the quotient and r the remainder

;

and so on. Thus

/7l = Oi H ; = '-'i -r
1 1

o^ — •••

If //i is less than n, the first quotient is zero, and Tve put

m 1

and proceed as before.

It will be observed that the above process is the same as

that of finding the greatest common measure of m and n
;

hence if in and a are commensurable, we shall at length

arrive at a stage where the division is exact and the

process terminates. Thus every fraction whose numerator

and denominator are positive integers can be converted into

a terminatiner continued fraction.

Ex. Keduce
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500. Convergents. The fractions obtained by stopj^ing

at the first, second, third, • • • quotients of a continued frac-

tion are called the first, second, third, • • • convergents, because,

as will be shown in Art. 506, each successive convergent is

a nearer approximation to the true value of the continued

fraction than any of the preceding convergents.

501. To show that the convergents are alternately less and

greater than the continued fraction.

Let the continued fraction be cii -\ .

The first convergent is cii, and is too small because the part

is omitted. The second convergent is % -\—
and is too great because the denominator a^ is too small.

The third convergent is a^H , and is too small because
-j <^2~r ^3

a.i-\— is too great; and so on.
«3

When the given fraction is a proper fraction, aj = ; if

in this case we agree to consider zero as the first conver-

gent, we may enunciate the above results as follows

:

Tlie convergents of an odd order are all less, and the con-

vergents of an even order are all greater, than the continued

fraction.

502. To establish the law of formation of the successive

convergents.

Let the continued fraction be denoted by

,111
a2+ %+ 0^4+

then the first three convergents are

tti aiCig + 1 a3(aia2 -f 1) ^- oti
^

1
' a^ ' ag • cig -h 1 '
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and we see that the numerator of the third convergent may
be formed by nmltiplying the numerator of the second con-

vergent by the third quotient, and adding the numerator
of the first convergent; also that the denominator may be

formed in a similar manner.

Suppose that the successive convergents are formed in a

similar way
;

let the numerators be denoted by 2^1, Ihy 2h) •*•?

and the denominators by q^, q^, qr„
••••

Assume that the law of formation holds for the 71th con-

vergent
; that is, suppose

2\ = Clnlh-l +Pn-2, Qn = ^^Jln-l + qn-2'

The (n + l)th convergent differs from the nth only in

having the quotient a„ H in the place of a„ ; hence the

(n + l)th convergent

«H+ )Pn-l-\-Pn-2 ,
, X .

^^n+lj (^n+l{<^nPn-l + Pn -2)+ Pn-l

a
by supposition.

If therefore we put

we see that the numerator and denominator of the (n + l)th

convergent follow the law which was supposed to hold in the

case of the nth. But the law does hold in the case of the

third convergent, hence it holds for the fourth, and so on

;

therefore it holds universally.

Ex. Reduce f|^| to a continued fraction and calculate the successive

convergents.

ByArt.499,^4 = 2+^^^^-l.
313 6+1 + 1 + 11 + 2

The successive quotients are 2, 6, 1, 1, 11, 2.

The successive convergents are f , ^f-,
-y-, ih iff? fit*
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Explanation. With the first and second quotients take the first

and second convergents, which are readily determined. Thus, in this

example, 2 is the first convergent, and 2 -f
a or J/ the second con-

vergent. Tlie numerator of the third convergent, 15, equals the numer-

ator of the preceding convergent, 13, multiplied by 1, the third quotient,

plus 2, the numerator of the convergent next preceding but one. The
denominator is formed in a similar manner : thus 7 = 1x6 + 1.

rru «f.u , 11(28)+ 15 323
The fifth convergent = ^^^r^ = ^•

(13) +

503. If the fraction is a proper fraction, we may consider

zero as the first convergent, and proceed as follows

:

Reduce -^ to a continued fraction, and calculate the suc-

cessive convergents.

Proceeding as in Art. 499,

227)84(0

00

84)227(2
• 168

59)84(1

59

25)59(...

We obtain -f
--— -— -— -— :^— -— -•

2-f l+-2+-2+-l-f3-}-2

The successive quotients are 0, 2, 1, 2, 2, 1, 3, 2.

Writing ^ for the first convergent and arranging the work

as show in the example of the preceding article, we have

Quotients 021221 3 2.

Convergents f,
i i

f, -^, ^, j\\, ^.

504. It will be convenient to call a„ the ?ith partial quo-

tient ;
the complete quotient at this stage being

We shall usually denote the complete quotient at any stage

by fc.
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We have seen that

qn ^K^ln-l + qn-2

Let the continued fraction be denoted by cc f then x differs

from — only in taking the complete quotient k instead of the

partial quotient a„ ; thus

^ ^ ^Pn-l-hPn-2
,

Mnl + qn-2

505. To show that if — be the /ith convergent to a continued

fraction, then

Let the continued fraction be denoted by

^111
tti H • • •

;

«2 + «3 4- «4 +
then p,, q^^i-Pn-l Qn= i^nPn 1 +Pn^2)qn-1 -Pn~l((^nqn-1+ ^n-2)

= (- l)(l>n-ign-2 -Pn-2qn-l)

= (- iy2)n-2qn-s~Pn-3qn-2), similarly,

= (-iy-\2hqi-i>iq2)-

But 2hqi —Piq2= («'i'^2 + 1) — «! • ^2 = 1 = (— 1)^

hence Pn^»-i - Pn-iqn =(- I)''-

When the continued fraction is less than unity, this result

will still hold if Ave suppose that a^ = 0, and that the first

convergent is zero.

Note, When we are calculating the numerical value of the suc-

cessive convergents, the above theorem furnishes an easy test of the

accuracy of the work.

Cor. 1. Each convergent is in its loivest terms; for if 2)n

and Qn had a common divisor it would divide Pnqa~\ ~Pn~\q,o
or unity

; which is impossible.
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Cor. 2. The difference between two successive convergents

is a fraction tvhose numerator is unity, and whose denominator

is the product of the denominators of these convergents ; for

qn^qn^l~ qnqn~l "quQu-l'

506. Each convergent is nearer to the continued fraction

than any of the preceding convergents.

Let X denote the continued fraction, and —? -^? -^
' qn qn+i qn+2

three consecutive convergents ; then x differs from —^ only
qn+2

in taking the complete (n + 2)th quotient in the place of

f^n+2 j
denote this by k

;
thus

Mn+l + qn

Pn KPn+'iqn^Pnqn+l) ^

and

^
qn qn{kqn+i + qn) qn{Ht+i + qn)'

Pn+l ^ Pn+iqn^PnQn+l 1

^n+1 qn+l(^qn+l + ^n) qn+l(Hn+l + ^n)

Now A; is greater than unity, and Qn is less than q^^i ; hence

Pn+l

qn+i
on both accounts the difference between -^ and x is less

than the difference between — and x; that is, every con-
qn

vergent is nearer to the continued fraction than the next

preceding convergent, and therefore nearer than any pre-

ceding convergent.

Combining the result of this article with that of Art. 501,

it follows that

The convergents of an odd order continually increase, hut

are always less than the continued fraction

;

The convergents of an even order continucdly decrease, but

are ahcays greater thari the contimied fraction.

^ The sign ~ ineani? " difference between."
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507. To find limits to the error made in taking any con-

vergent for the continued fraction.

Let —? -^? -^^ be three consecutive convergents, and

let k denote the complete (w -|- 2)tli quotient

;

then ^^^iWL±P«

Pn ^ 1

qn qn{Mn+l + ^n)
^n(^«+l+f

Now k is greater than 1, therefore the difference between

Pn
the continued fraction x, and any convergent, — , is less than

1 1
^^"

, a7id greater than
qn^n+l qn(qn+l + qn)

Again, since q,^+i > q„, the error in taking — instead of x

1 1
^"

is less than —- and greater than -—

—

qn 2q\^i

508. From the last article it appears that the error in

P
taking — instead of the continued fraction is less than

1 ^" 1 1
, or —

; that is, less than -; hence
qnqn+i qn{a'n+iqn-hqn-i)

^^
a^+iqJ

the larger a^+i is, the nearer does — approximate to the

continued fraction
;

therefore, any convergent which imme-
diately precedes a large quotient is a near apijroximation to

the continued fraction.

Again, since the error is less than —^, it follows that in
qn-

order to find a convergent which will differ from the con-

tinued fraction by less than a given quantity -, Ave have
a

only to calculate the successive convergents up to — , where

q^ is greater than a. ^'*
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509. The properties of continued fractions enable us to

tind tAvo small integers whose ratio closely approximates to

that of two incommensurable quantities, or to that of two
quantities whose exact ratio can only be expressed by large

Ex. Find a series of fractions approximating to 3.14159.

In tlie process of finding the greatest common measure of 14159

and 100000, the successive quotients are 7, 15, 1, 25, 1, 7, 4. Thus

o-in-Q .. ,
1 1 1 1 1 11

o.l41o9 = o T 7+15+1+25+1-7+4
The successive convergents are

1 2_2. 3.13 Aii ...
1' 7 ' 106' 1 13'

This last convergent which precedes the large quotient 25 is a very

near approximation, the error beini! less than , and there-
25 X (113)-^

fore less than , or .000004.
25 X (^100)-

510. Any convergent is nearer to the continued fraction than

any other fraction whose denominator is less than that of the

convergent.

Let ./: be the continued fraction. 1-^', ^ "~^ two consecu-
q.. qn-i

tive convergents, - a fraction whose denominator s is less

than 5„.

If possible, let - be nearer to .r than 1^, then - must be
s q^ s

nearer to x than h^ [Art. 506] ; and since x lies between

-?^ and -^^"~\ it follows that i must lie between 1-^ and h^.

Hence

r^^^^<^«^^, thatis<^-;
s qn-i qn qn-1 7./y«-i

qn

that is, an integer less than a fraction ; which is impossible.

Therefore ^ must be nearer to the continued fraction than -•
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EXAMPLES XLIII. a.

Calculate the successive convergents to

1 '>+J_ J__L A_ J_ 1
1^ 3+ 5- 1+ 1+ 2"

2 1111111
2+ 2+ 34- 1+ 4+ 2+ 6'

3 o , J_ J_ J_ _i_JL 1

3+ 1+ 2-f- 2+ 1+ 9*

Express the following quantities as continued fractions and find the

fourth convergent to each : also determine the limits to the error made
by taking the third convergent for the fraction.

4. fff. 6. iifl. 8. .37. 10. ..3020.

5. ffi 7. ^VtV 9- 1-139. 11. 4.316.

12. Find limits to the error in taking fff yards as equivalent to a

metre, given that a metre is equal to 1.0936 j'ards.

13. Find an approximation to

i +X_LJ.^^...
3+ 5+ 7+ 9+ 11 +

which differs from the true value by less than .0001.

14. Show by the theory of continued fractions that f^ difiers from

1.41421 by a quantity less than xriso'

RECUERING COXTIXTED FRACTIONS.

511. We have seen that a terminating continued fraction

with rational quotients can be reduced to an ordinary frac-

tion with integral numerator and denominator, and there-

fore cannot be equal to a surd ; but we shall prove that a

quadratic surd can be expressed as an infinite continued

fraction whose quotients recur. TTe shall first consider a

numerical example.

Ex. Express ^^19 as a continued fraction, and find a series of frac-

tions approximating to its value.

Vl9 = 4 +(V19 - 4)= 4 -^-^|-^;

V19 + 4 ^ ^ ^

V19 - 2 ^ ^ ^

5 .

3 3 V19 + 2
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V19 + 2 ^-^
I

V^Q-3 ^
5 5 ^19 + ^'

2 2 Vl^ + S'

Vl9 + 3 _-.
, V19-2 = 1 +

5 5 V19 + 2'

Vl9 + 2 ^o Vl9-4 ^^ 1

3 3 V19 + 4'

^19 + 4=8+(Vl9-4) = 8+...

after this the quotients 2, 1, 3, 1, 2, 8 recur ; hence

^ 2+ 1+ 3+ 1+ 2+ 8+

It will be noticed that the quotients recur as soon as we come to a

quotient which is double the first.

Explanation. We first find the greatest integer in -^19 ; this is 4,

and we write ^19 = 4 +(^^19 — 4). We then express ^19 — 4 as an
equivalent fraction with a rational numerator. Thus

,na . (Vl9-4)(Vl9 + 4) _ 3
^ V19+4 -^19 +

4"

The work now stands

3 . , 1
V19 = 4

V19 + 4 V19 + 4

v/l9 4- 4We begin the second line with —— , the denominator of this
o

complex fraction, which is itself a fraction with a rational denomi-

nator. The greatest integer in this fraction is 2, and we write

Vl9 + 4 ^o
I

V19-2
3 3

We then multiply numerator and denominator by the surd conjugate

to a/19 — 2, so that after inverting the result , we again begin^ °
V19 + 2

° ^

a line with a rational denominator. The same series of operations is

performed in each of the following lines.

The first seven convergents formed as explained in Art. 502 are
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The error in taking the last of these is less than , and is

1
(320)-^'

therefore less than or , and still less than .00001. Thus
(320)2 102400

the seventh convergent gives the value to at least four places of deci-

mals.

512. Every periodic continued fraction is equal to one of

the roots of a quadratic equation of which the coefficients are

rational.

Let X denote tlie continued fraction, and y tlie periodic

part, and suppose that

,11111
I

h-\- c+ /<+ k+ y

1 ,1111
and yz=m-\ •

,

7i+ u+ r+ y

where a, h, c, ••• h, k, m, n, "-u, v are positive integers.

P p'
Let -, —, be the convergents to x corresponding to the

quotients h, k respectively; then since y is the complete

quotient, we have x = —f-
——•. whence y = ^,—^•^ '

q'y + q' ^ q'x-p<
T t'

Let -, -7 be the convergents to y corresponding to the
s s I ,

quotients u, v respectively ; then y = --—-—
Substituting for y in terms of x and simplifying, Ave obtain

a quadratic of which the coefficients are rational.

The equation s'y^-{-(s—r')y—r = 0, which gives the value

of y, has its roots real and of opposite signs ; if the positive

value of y be substituted in x = —i- —. on rationalizing the
^ly + 'l A-\- /B

denominator the value of x is of the form —^^^^— , where

A, B, C are integers, B being positive since the value of y
is real.
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Ex. Express iH — as a surd.
2+ 3+ 2+ 3+

Let X be the value of the continued fraction ; then

.-1=^ \
;

2+ 3 + (x-l)
'

whence 2a;2 + 2x-7 = 0.

The continued fraction is equal to the positive root of this equation,

and is therefore equal to v —

EXAMPLES XLIII. b.

Express the following surds as continued fractions, and find the

sixth convergent to each :

1. V3-

2. V^-
3. V6-
4. V8-

5. Vl^-

17. Find limits of the error when ^-^^- is taken for ^^17.

18. Find limits of the error when fJf is taken for ^23.

19. Find the first convergent to ^\0\ that is correct to five places

of decimals.

20. Find the first convergent to y^l5 that is correct to five places

of decimals.

Express as a continued fraction the positive root of each of the

following equations

:

21. x2+2x-l=0. 22. x2-4a;-3=0. 23. 7 a:'^-8ft:-3=0.

6.



CHAPTER XLIV.

Summation of Series.

513. Examples of the summation of certain series (Arith-

metic and Geometric) have occurred in previous chapters.

We will now consider methods for summing other series.

514. Recurring Series. A series ?<o + ^*i + ^'2 -h ^%+ •••?

in which from and after a certain term each term is equal to

the sum of a fixed number of the preceding terms multiplied

respectively by certain constants, is called a recurring series.

A recurring series is of the 1st, 2d, or rth order, according

as 1, 2, or r constants are required as multipliers.

515. Scale of Relatione In the series

each term after the second is equal to the sum of the tAvo

X)receding terms multiplied respectively by the constants 2 x

and — x^ ; these quantities being called constants because

they are the same for all values of n. Thus

5x' = 2x . 4ar^+(-^')- 3i«';

that is, u^ = 2 xu^ — xhu
;

and generally, when n is greater than 1, each term is con-

nected with the two that immediately precede it by the

equation

U,, = 2 Xlln_i — X^Un-2,

or, 21^ — 2 xit,,_i + x\,_2 = 0.

In this equation the coefficients of ?t„, u.^_i, and ?^„_2? tnJcen

ivitJi their x>^'oper signs, form what is called the scale of
relation.

413
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Thus the series

l-^2x-\- 3.t2 + 4ar^ + 5x'+ ...

is a recurring series in which the scale of relation is

1 - 2 a; + x\

516. To find any term when the scale of relation is given.

If the scale of relation of a recurring series is given, any

term can be found when a sufficient number of the preceding

terms are known. As the method of procedure is the same,

however many terms the scale of relation may consist of, the

following illustration will be sufficient

:

If 1 — p.x* — qx' — rx^

is the scale of relation of the series

«o -h ciiX + a^ 4- ctg,^ + • • •

we have

a^^x"" =2)x ' a,^__lX''~'^ + qx^ . a„_2.T"~- + rx^ • a,^_^x'"~^,

or a„ = pa„ i + qa^ 2 + ran^^
I

thus any coefficient can be found when the coefficients of the

three preceding terms are known.

517. To find the scale of relation. If a sufficient number

of the terms of a series be given, the scale of relation may
be found.

Ex. Find the scale of relation of the recnrring series

2 + 5a: + 13 a;2 + 35 cc^ + 97 r/ + 275 x^ + 793 x^
-f .•-.

This is plainly not a series of the first order. If it be of the second

order, to obtain p and q we have the equations

13 = 5p + 2(/, and 35 = 13|) + 5g ;

whence p = 5, and q = — 6. By using these values of p and q, we can

obtain the fifth and sixth coefficients ; hence they are correct, and the

scale of relation is

1 -bx + 6x^

If we could not have pbtained the remaining coefficients with these

values of p and q, we would have assumed the series to be of the third

order, and formed the equations

35 = 13p + 5g + 2r,

97 =SBp-\- 13 g + 5 r,

275 = 97j; + 35^ + 13»';
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whence values for p, g, and r would have been obtained, and trial with
the seventh and following coefficients would have shown whether they

were correct.

518. If the scale of relation consists of 3 terms it involves

2 constants, p and g ; and we must have 2 equations to deter-

mine 2> and q. To obtain the first of these we must know at

least 3 terms of the series, and to obtain the second we must
have one more term given. Thus to obtain a scale of

relation involving two constants we must have at least 4
terms given.

If the scale of relation be 1 — p.r — qx^ — rr^, to find the 3

constants Ave must have 3 equations. To obtain the hrst of

these w^e must know at least 4 terms of the series, and to

obtain the other two we must have two more terms given

;

hence to find a scale of relation involving 3 constants, at

least 6 terms of the series must be given.

Generally, to find a scale of relation involving 7n constants,

we must know at least 2 m consecutive terms.

Conversely, if 2 m consecutive terms are given, we may
assume for the scale of relation

1 — 2h^ — Ih^"^ — Ih^^ — ... — p^x"^.

519. The Sum of n Terms of a Recurring Series. The
method of finding the sum is the same whatever be the

scale of relation ; for simplicity we shall suppose it to con-

tain only two constants.

Let the series be

ciq -f a-^x -f acfc^ + a^x^^ + • • •

and let the sum be S ;
let the scale of relation be 1 —px—qx^

;

so that for every value of n greater than 1, we have

Now^ S = a-o + «i^' + «:2'^^ + ••• + (f'n^i^"~^)

— qgi^S = — qaQSc^ — ... — qa,^_^x"~^ — qa,^_^'' — qa,^^^x'^^^.
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Hence

(1 —px— qx^)S=a^^+ (oi—pao)^— (p(^n- 1

+

qO'n-2)^'*

—

</^«-l^""^^

for the coefficient of every other power of x is zero in con-

sequence of the relation

a„ — pa„_i — ^a,i_2 = ^•

^ ^ ctp + (ai - iyao)x (jX(,,_i + (y^n-s)-^" + ^a,_ia;"+^

1 —2)X — qx^ 1 — j^.-c — (/a^^

Thns the sum of a recurring series is a fraction whose de-

nominator is the scale of relation.

520. If the second fraction in the result of the last article

decreases indefinitely as n increases indefinitely, the formula

for the sum of an injinite number of terms of a recurring

series of the second order reduces to

^^ ao+(fti-jX(o)a;

1 — px — q^x?

If we develop this fraction in ascending powers of x as

explained in Art. 487, we shall obtain as many terms of the

original series as we please ; for this reason the expression

«o + («i - PCIq)x

1 —px — qx^

is called the generating,function * of the series. The summa-

tion of the series is the finding of this generating function.

If the series is of the third order,

o «o 4- {ch — i^«o) ^ + («2 — P(^\ — 7«'o)^
O = ij

5 °

1 —px — qar — rx^

521. From the result of Art. 519, we obtain

ao-{-(ai-pao)x _ ,...,,. o +1

{pan-i + gan-2)^" + qa'n~ix'''^\

l—px — qx"

* Sometimes called the generating fraction..
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from whicli we see that althougli the generating function

«o+K-j)ffo)^^•

1 — px — qx^

may be used to obtain as many terms of the series as we
please, it can be regarded as the true equivalent to the

infinite series

«o 4- «ia^* 4- «2a^^ H ,

only if the remainder

1 —px — qx^

vanishes when n is indefinitely increased ; in other words
only when the series is convergent.

522. The General Term. When the generating function

can be expressed as a group of ]3artial fractions the general

term of a recurring series may be easily found.

Ex. Find the generating function, and tlie general term, of the

reciuTiug series

1 -7a;-a:2-43x3

Let the scale of relation be 1 — px — qocr ; then

-\ + lp-q = 0, - 43 + p + 7 g = ;

whence j9 = 1, g = 6 ; and the scale of relation is

Let 8 denote the sum of the series ; then

S=\-lx- z2-43x3

-xS= - x + 7x2+ x3+-..

-Qx^S= -6x2 + 42x3+...

... (I_x-6x2)^'=l -8x,

1 -8x
S.

6x2

which is the generating function.

1 — 8 r
If we separate — into partial fractions, we obtain

1 - X - 6 x2

2 1_^
l + 2x l-dx

2 E
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By actual division, or by the Binomial Theorem.

2 = 2 [1 - 2 X + i2xy -•.. + (- 1)'-(2 xy+ ...]

1 +2a;

1

1 — 3a:

Whence the (r + l)th, or general term, is

[2(2'-)(- !)'• - 3'-] X'- = {(- l)'-2'-+i - 3'-}x'-.

EXAMPLES XLIV. a.

Find the generating functions of the following series.

1. 1 + 6 X + 24 x2 + 84 x3 + ••••

2. 2 + 2 X - 2 x2 + 6 x3 - 14 x"* + - •••

3. 3 - 16 x + 42x2-94x3+ .-..

4. 2 - 5 X + 4 x2 + 7 x3 - 26 x* + .-.

5. 4 + 5x + 7x2 + 11x3+ ....

6. 1 + x + 2x2 + 2x3 + 3x'i + 3x5 + 4x6 + 4x7+ ••..

7. 1 + 3x + 7x2+ 13x3 + 21x4 + 31x5+ ....

8. 1 -3x + 5x2- 7x3 + 9x*- 11x5 + ....

Find the generating function and the general term in each of the

following series

:

9. 1 + 5x + 9x2+ 13x3+ .... 11. 2 + 3x + 5x2 + 9x3+ ....

10. 2-x + 5x2-7x3+ .... 12. 7 -6x + 9x2 + 27x4 + ....

13. 3 + 6x + 14 x2 + 36 x3 + 98 x^ + 276 x^ + ....

THE METHOD OF DIFFERENCES.

523. Let u,^ denote some rational integral function of n,

and let Ui, u^, %, u^y--- denote the values of i(„ Avlien for n

the values 1, 2, 3, 4, ••• are written successively.

From the series Ui^ ti2, y^, Xa^ ^s,
••• obtain a second series

b}^ subtracting each term from the term which immediately

follows it.

The series ?<2 — '^hf ^'s — '^h^ '^h — "^'s? ^'s — '^^y '" ^^^^^s found

is called the series of the first order of differences, and may be

conveniently denoted by Duy, Du^, Dii^, Du^, ••••

By subtracting each term of this series from the term that

immediately follows it, we have Du^ — Dui, Du^ — Du2,
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Du^— Du^, ... wliicli may be called the series of the second

order of differences, and denoted by D.^rti, D2U2, B2IIS, ....

From this series we may proceed to form the series of the

third, fourth, fifth, • • • orders of differences, the general terms

of these series being D^u^, D^n^, D^u^, ••• respectively.

524. Any Required Term of the Series. From the law of

formation of the series

Ul, U2, llr^, W4, W5, Uq, • • '

Dui, Du2, Duq, Du^, Du^, •••

A^i, D2112, A^'sj A^*4j •••

D.^t^, D3U2, D3U3, •••

it appears that any term in any series is eqnal to the term

immediately preceding it added to the term below it on the

left.

Thus U2 = Ui + Dili, and Du2 = Dui + D2U1.

By addition, since 712 + Vu2 = u^, we have

1(3 = u^ -f 2 Bill + ^2^^i-

In an exactly similar manner by using the second, third,

and fourth series in place of the first, second, and third, we
obtain Dwg = Dui -\- 2 l>2^^i + Ds^h.

By addition, since u^ + Dn^ = "^^4? we have

W4 = Ui-\-S Dill + 3 A^'i + A"i-

So far as we have proceeded, the numerical coefficients

follow the same law as those of the Binomial Theorem.

We shall now prove by induction that this will always be

the case. For suppose that

Un+i = ui + nDui+ ''^^~^'> D2U1 + ... + "CA^^i + ... + Djii',

then by using the second to the (n -f 2)th series in the place

of the first to the (n + l)th series we have

Du^^i = Dai + nD2Ui + ''^''^~^^^ D,Ui + ... + "CUiA'^i

' -\- '•' + D^+i^i.
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"By addition, since y^„+i + D?f„+i = ?i„+2? we obtain

But

_ (;,+ l),,(,,-l) ... (n^-r-\-l)_

Hence if the law of formation holds for n^^^ it also holds

for ?(„^2j b^it it is trne in the case of u^, therefore it holds for

?<5, and tlierefore universally. Hence

u,, = u, + (n - l)Du, +
^''~f-^~^'^

D,u, + ••• + i>n-i^^i-

If we take a as the first term of a given series, di, d^, d^, .

.

.

as the ^first terms of the successive orders of differences, any

term of the given series is obtained from the formula

(,,_iy(,,-2)(..-3)

525. The Sum of n Terms of the Series. Suppose the

series Ui, U2, Us, ••• is the first order of differences of the

series

^IJ '^'2? 'i^S, ^'-IJ
•••>

then y^+i = (Vn+l-'^n) + (i'n - 1'n-l) + ••• + (^'2 " ^'l)+ ^1,

identically

;

.'. V„+l = U,, + Un-l -\ h Ih + ^^1 + ^1.

Hence in the series

0, V2, V3, v„ V,-

?<!, ?/2, '?% '?«4"-

the law of formation is the same as in the preceding article;

.-. v^^, = + nu, + ^^^f^ Du, -f ..
. + i>„"i

;

JL • ij
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that is, 111 + '^2 + ?'3 + ••• + ^U

, n ()i — 1) j^. , '}i(n — l)(n — 2) ^, , , r,

If, as in the x^receding article, a is the first term of a given

series, di, d^, d^, • • • the first terms of the successive orders of

differences, the sum of n terms of the given series is obtained

from the formula

e , nCn — 1) 7 , nCn — V)(n — 2) ,

Ex. 1. Find the 7th term and the sum of the first seven terms of

the series 4, 14, 30, 52, 80, .....

The successive orders of differences are

10, 16, 22, 28,

6, 6, 6,

0, 0.

Here n — 7, and a = 4.

Hence, using formula, Art. 524, the 7th term

= 4 + 6. 10 +^.6 = 154.

Using formula. Art. 525, the sum of the first seven terms

= 7 , 4 +— . 10 + llAll . 6 = 448.
1.2 1.2.3

Ex. 2. Find the general term and the sum of n terms of the series

12, 40, 90, 168, 280, 432, ....

The successive orders of difference are

28, 50, 78, 112, 152, ...

22, 28, 34, 40, ...

6, 6, 6, ...

0, 0,...

Hence the ?ith term [Art. 524]

- 19 (, o« (,, 1)
I

22 {n - l)(n - 2) 6 (n - l)0^ - 2)Cn - 3)

= ^3 + 5 ^2 + 6 n.
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Using the formula for the sum of n terms we obtain

(s' _io,, ,

2871(71-1)
,

227i(n-l)(n-2) 6 n(n - l)(n-2)(n-3)
^„_iZ7i+ - +

j3
+

^

= — (3 w2 + 26 w + 69 91 + 46)

= tV n(n + 1)(3 7i2 + 23 7i + 46).

526. It will be seen that this method of summation

will only succeed when the series is such that in forming

the orders of differences we eventuallj come to a series in

which all the terms are equal. This will always be the

case if the nth term of the series is a rational integral

function of n.

PILES OF SHOT AND SHELLS.

527. Square Pile. To find the number of sliot arranged in

a complete pyramid on a square base.

The top layer consists of a single shot ; the next contains

4 ; the next 9, and so on to n^, n being the number of layers

:

hence the form of the series is

1% 2% 32, ^\-",n\

Series 1, 4, 9, 16, •••,?il

1st order of differences 3, 5, 7,

2d order of differences 2, 2,

3d order of differences 0.

Substituting in Art. 525, we obtain

o_,,
,

n{n-l) n(n-l)(n-2) n{n+l){2n+l)
^-''+ 1.2 •'^+ 1.2.3

'^- 6

528. Triangular Pile. To find the member of shot arranged

in a complete pyramid the base of ivhich is an equilateral tri-

angle.
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The top layer consists of a single shot ; the next contains

3 ; the next 6 ;
the next 10, and so on, giving a series of the

form
1, 1+2, 1+2+ 3, 1+2+ 3+4,...

Series 1, 3, 6, 10,

1st order of differences 2, 3, 4,

2d order of differences 1, 1,

3d order of differences 0.

Hence

^ ,

n(n-l) ^ ,
n(7i-l)(n-2) _ n(n -\-l)(n-{-2)

"^"''"^
1.2

'^'^ 1.2.3 6

529. Rectangular Pile. To find the number of shot arranged

in a complete pile the base ofivhich is a rectangle.

The top layer consists of a single row of shot. Snppose

this row to contain m shot ; then the next layer contains

2(m + 1) ; the next 3(m + 2), and so on, giving a series of

the form
m, 2m + 2, 3m+ 6, 4m+ 12, ••.

1st order of differences m+ 2, 7^1 +4, 7>i+ 6,

2d order of differences 2 2,

3d order of differences 0.

Now let I and iv be the number of shot in the length and
width, respectively, of the base ; then 7n = 1 — w -j-1.

Making these substitutions, we have

n(n-{-l)(3l-iv-\-l)

6

EXAMPLES XLIV. b.

1. Find the eighth term and the sum of the first eight terms of the

series 1, 8, 27, 64, 125,....

2. Find the tenth term and the sum of the first ten terms of the

series 4, 11, 28, 55, 92, ....
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Find the number of shot in :

3. A square pile, having 15 shot in each side of the base.

4. A triangular pile, having 18 shot in each side of the base.

5. A rectangular pile, the length and the breadth of the base con-

taining 50 and 28 shot respectively.

6. An incomplete triangular pile, a side of the base having 25 shot,

and a side of the top 14.

7. An incomplete square pile of 27 courses, having 40 shot in each

side of the base.

8. Find the ninth term and the sum of the first nine terms of the

series 1, 3 + 5, 7 + 9 + 11, ....

The numbers 1, 2, 3, ••. are often referred to as the natural

numbers.

9. Find the sum of the squares of the first n natural numbers.

10. Find the sum of the cubes of the first n natural numbers.

11. The number of shot in a complete rectangular pile is 24395 ; if

there are 34 shot in the breadth of the base, how many are there in its

length ?

12. The number of shot in the top layer of a square pile is 169, and

in the lowest layer is 1089 ; how many shot does the pile contain ?

13. Find the number of shot in a complete rectangular pile of 15

courses, having 20 shot in the longer side of its base.

14. Find the number of shot in an incomplete rectangular pile, the

number of shot in the sides of its upper course being 11 and 18, and

the number in the shorter side of its lowest course being 30.

Find the nth. term and the sum of n terms of the series

:

15. 4, 14, 30, 52, 80, 114, ....

16. 8, 26, 54, 92, 140, 198, ••..

17. 2, 12, 36, 80, 150, 252, ....

18. 8, 16, 0, -64, -200, -432,....

19. 30, 144, 420, 960, 1890, 3360, •••.

20. What is the number of shot required to complete a rectangular

pile having 15 and 6 shot in the longer and shorter side, respectively,

of its upper course ?

21. The number of shot in a triangular pile is greater by 150 than

half the number of shot in a square pile, the number of layers in each

being the same : find the number of shot in the lowest layer of the

triangular pile.
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22. Find the number of shot in an incomplete square pile of 10

courses when the number of shot in the upper course is 1005 less than

in the lowest course.

23. Show that the number of shot in a square pile is one-fourth the

number of shot in a triangular pile of double the number of courses.

INTERPOLATION.

530. The process of introducing between the terms of a

series intermediate values conforming to the law of the

series is called interpolation. An important application is in

finding numbers intermediate between those given in loga-

rithmic and other mathematical tables. For this purpose

we may employ the formula used in finding the ?ith term

by the Differential Method, giving fractional values to n.

Ex. Given log 40 = 1.6021, log 41 = 1.6128, log 42 = 1.6232, log 43

= 1.6335, •••find log 40. 7.

Series 1.6021, 1.6128, 1.6232, 1.6335,

1st order of differences, .0107, .0104, .0103,

2d order of differences, - .0003, - .0001,

3d order of differences, + .0002.

Substituting in formula of Art. 524, we have

log 40.7 = 1.6021 + 1(.0107)+ 1(-1)(^3^
7 /'__3_V_1^\ / .0002 \

A 10 jv lojl [3 j

= 1.6021 + .00749 + .000031 + .000009 = 1.6096 +.

Here log 40 is the first term (n = l); log 41 is the second term

(n = 2) ; hence in introducing the intermediate term log 40.7 we give

to n a value 1.7.

EXAMPLES XLIV. C.

1. Given log 3 =: 0.4771, log 4 = 0.6021, log 5 = 0.6990, log 6

= 0.7782, ...
; find log 4.4.

2. Given log 51 = 1.7070, log 52 = 1.7160, log 53 = 1.7243, log 54

= 1.7324, ...
; find log 51.9.

3. Given V^ = 2.236, ^Q = 2.449, ^7 = 2.645, ^S = 2.828 ; find

V^, a/tTI, and VtTtI.

4. Given ^51 = 3.7084, ^52 = 3.7325, ^53 = 3.7563, ...
; find

^5^5L18.

+ 10'
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Binomial Theorem. Any Index.

531. In Chapter xxxvii. we investigated the Binomial

Theorem when the index was any positive integer ; we sliall

now consider whether the formulae there obtained hold in

the case of negative and fractional values of the index.

Since, by Art. 411, every binomial may be reduced to one

common type, it will be sufficient to confine our attention to

binomials of the form ( 1 + xy.

By actual evolution we have

(1 + 0.')^ = Vr+^- 1 H-io.'- ia;2 + J^a;3_ ...

.

and by actual division,

(1 - .^•)-' = 7T-^. = 1 + 20^ + 3a.-2 + 40.^ + ...

;

(1 - xy

and in each of these series the number of terms is unlimited.

In these cases we have by independent processes obtained

an expansion for each of the expressions (l+a;)"' and

(1 + .^•)~^. We shall presently prove that they are only

particular cases of the general formula for the expansion of

(1 -f xy, where n is any rational quantity.

This formula was discovered by Newton.

532. Suppose we have two expressions arranged in

ascending powers of x, such as

and l+nx + »<" " ^>
x' + "(" ' ^X" ,' 2) ^. + ... (o).

426



BINOMIAL THEOREM. ANY INDEX. 427

The product of these two expressions will be a series in

ascending powers of x ;
denote it by

l-\-Ax-^ Bx^ -^Cx^ + Dx'-{- '•-',

then it is clear that A, B, (7, ••• are functions of m and n,

and therefore the actual values of A, B, (7, ••• in any ^2iY-

ticular case will depend upon the values of m and n in that

case. But the way in which the coefficients of the powers

of X in (1) and (2) combine to give A, B, C, • • • is quite inde-

pendent of 7)1 and n ; in other words, whatever values m and

n may ha,ve A, B, G, "'2^reserve the same invariahle form.

If therefore we can determine the form of A, B, C, -•- for

any value of m and n, we conclude that A, B, C, ••• will

have the same form for all values of m and n.

The principle here explained is often referred to as an

example of "the permanence of equivalent forms"; in the

present case we have only to recognize the fact that in any

algebraic prodtict the form of the result will be the same
whether the quantities involved are whole numbers, or frac-

tions
;
positive, or negative.

We shall make use of this principle in the general proof

of the Binomial Theorem for any index. The proof which

we give is due to Euler.

533. To prove the Binomial Theorem when the index is a

positive fraction.

Whatever he the value of m, positive or negative, integral or

fractional, let the symbol f(m) stand for the series

-,
,

,
m(m — 1) 9 ,

m(m — l)(m — 2) 3 ,

1.2 1.2.3 '

then/(?i) will stand for the series

-,
,

,
n(n — 1) 9 ,

n(n — l)(n — 2) 3

If we multiply these two series together the product will

bo another series in ascending powers of x, whose coeffi-

cients ivill be unaltered in form tvhatever m and n may be.
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To determine this invariable form of the product we may
give to m and n any valnes that are most convenient ; for

this jDurpose suppose that m and n are positive integers.

In this case f{m) is the expanded form of (1 + x^, and fiii)

is the expanded form of (1 + xy
;
and therefore

fiin) X fill)= (1 + xy^ X (1 + xy = (1 + xY^%

but when m and n are positive integers, the expansion of

(1 + a')'"+" is

This then is the form of the product of /(m) x/(?i) in all

cases, whatever the values of m and n may be; and in

agreement Avith our previous notation, it may be denoted by

f(^n -I- n) ;
therefore for all values ofm and n

f(:m)xf(n)=f(m-{-n).

Also f{m) X f(n) X f(p)= f(m + n) x f(p)

= f{m + n + _2J), similarly.

Proceeding in this way we may show that

/(m) x/(>0 x/(p) ••• to ^' factors=/(m+ ?i+i9-|---. to k terms).

Let each of -these quantities, m, n, p, •••, be equal to -,

where h and k are positive integers

;

{/©['=;(«>:

but since h is a positive integer, f(Ji)= (1 + a;)^

but /( -
)
stands for the series

-(--A
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-("--A
.-. (l + ^)' = l+|^ + ^^^a^+...,

which proves the Binomial Theorem for any positive frac-

tional index.

534. To prove the Binomial Theorem when the index is

any negative quantity.

It has been proved that

/(m)x/(n) = /(m4-^0

for all values of 7n and n. Replacing m by — n (where n

is positive), we have

/(-n)x/00= /(-« + n)= /(O)=l,

since all terms of the series except the first vanish

;

fkr ''-''''

but/()i)= (l + xy for any positive value of n
;

or (l_|-a;)-«=/(-90.

But/(— ?i) stands for the series

l+(-n>-+ (-")(7^"-^) x^+-;

.-. (1 + x)-» = 1 +(- n)x + (-n)(-n-l)
^^, ^ ...

.

which proves the Binomial Theorem for any negative index.

535. It should be noticed that when x <1, each of the

series f(m), f(n), f(m + ?i) is convergent, and /(m + n) is

the true arithmetical equivalent of /0>0 X f(n). But when
X > 1, all these series are divergent, and we can only assert

that if we multiply the series denoted by f(m), by the

series denoted by f(n), the first r terms of the product will

agree with the first r terms of /(m + n), whatever finite

value r may have.
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Exponential and Logarithmic Series.

536. The advantages of common logarithms have been

explained in Art. 438, and in practice no other system is

used. But in the first place these logarithms are calculated

to another base and then transformed to base 10.

In the present chapter we shall prove certain formula?,

known as the Exponential and Logarithmic Series, and give a

brief explanation of the way in which they are used in con-

structing a table of logarithms.

537. To expand a^ in ascending powers of jr.

By the Binomial Theorem, if n > 1.

^ ,

1
,
nx(nx—l) 1 ,

nx(nx—V)(nx—2) 1
,

n \2 n^
1

3

n"^

xlx ) x(x ]{x )

By putting x = l, we obtain

=1+^'+-^^+-^

—

^
—-+ w-

1_1 fl-lYl-2\

430
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hence the series (1) is the o^th x^ower of the series (2) ; that is,

x( X
)

x{ X ]( X

1 + .+ V^+ V ''A n,
^

and this is true however great n may be. If, therefore, n be

indefinitely increased, we have

The series 1 + 1+1 + 1 + 1+...

is usually denoted by e ; hence

/yi^ /yvO /yt^

Write ex for .t, then

e- = 1 + ex- +— +^ + ••••

[2 |3

Now let e" = a, so that c = log^ a ; by substituting for c

we obtain

a'= 1 + »log.a + ^i!fl|i^Vi?^(^V ....

This is the Exponential Theorem.

538. The series

which we have denoted by e, is very important, as it is the

ba^e to which logarithms are first calculated. Logarithms

to this base are known as the Napierian system, so named
after Napier, the inventor of logarithms. They are also
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called natural logarithms from the fact that they are the

hrst logarithms which naturally come into consideration in

algebraic investigations.

When logarithms are used in theoretical work it is to

be remembered that the base e is always understood, just as

in arithmetical work the base 10 is invariably employed.

From the series the approximate value of e can be deter-

mined to any required degree of accuracy ; to 10 places of

decimals it is found to be 2.7182818284.

Ex. 1. Find the sum of the infinite series

l + l + i + i + ....

[2 [4 1

6

We have ^ = ^ + ^
+|i + |"i

+ |i
+ '"

'

and by putting a; = — 1 in the series for e^, we obtain

...e + e- = 2(l + i + i + i +

hence the sum of the series is \{e +e"i).

Ex. 2. Find the coeihcient of x'' in the expansion of ^ ~ ^
.

^?-ii^ = (a-&x)e-^

= («-6x){l-x +|-| + ... + (^H-...}.

( — IV (— iy~i
The coefficient required = ^^——^ • a — -^-

—

^ h
\r \r-\

|r

539. To expand log, (1 + x) in ascending powers of x.

From Art. 537,

if(\o^,af vYlog^rt)^
,a'-=l+ylog,a+-^^^|- +

|3
"^'"'
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In this series write 1 -{- x for a ; thus (1 -\- xy

Also by the Binomial Theorem, when y < 1 we have

Now in (2) the coefficient of y is

^ I

(-1)^.
I

(-!)(- 2) ^. ,

(-l)(-2)(-3)
.^+1.2'' + 1.2.3 "- + 1.2.3.4 *• +
'

that is, ic — — 4-^?^— ^4-...,
2 3 4

Equate this to the coefficient of y in (1) ; thus we have

log,(l+x)=..;-J + |--|+....

This is known as the Logarithmic Series.

540. Except when x is very small the series for log^ (1+ x)

is of little use for numerical calculations. We can, however,

deduce from it other series by the aid of which Tables of

Logarithms may be constructed.

541. In Art. 539 we have proved that

x^ x^
log,(l + a;)=a;-- + ^- •

changing x into — x, we have

log,(l - x)=-x-~---6eV J
2 3

By subtraction,

L±
X \^' ' 3 ' 5

, so that X = ^
1 — X 71 2 91 + 1

log.
^ =2 X -\ h

Put ^ = ^^— , so that X = : we thus obtain

log,(?i+l)-W ?i=2i

—

1 1 h^'^ ^
""'

(271+1 3(27i+l)3^5(2n+l)^^

2f
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From this formula by putting n = l we can obtain log, 2.

Again by putting n = 2 we obtain log, 3 — log, 2 ; whence

logc 3 is found, and therefore also log, 9 is known.

Now by putting n = d we obtain log, 10 — log, 9 ; thus the

value of log, 10 is found to be 2.30258509 ....

To convert Napierian logarithms into logarithms to base

10 we multiply by , which is the modulus [Art.
^ log, 10'

^
441] of the common system, and its value is qnororAa

—

'

or .43429448 .
. • ; we shall denote this modulus by M.

By multiplying the last series throughout by M we obtain

a formula adapted to the calculation of common logarithms.

Thus

31 log, (n + 1)—M log, n =
o ,^ ( 1 1

,
1

, "t.

( 2 n + 1 3(27^ + 1)^
"*"

5(2 n + 1)^
"^ '*

j
'

that is, logio(n + 1)— logio?i =

^( M M M
, )

(271 + 1 3(2n + l/ 5(271 + 1)^ >

Hence if the logarithm of one of two consecutive num-

bers be known, the logarithm of the other may be found,

and thus a table of logarithms can be constructed.

EXAMPLES XLVI.
1. Show that

(2^ e'-l-l+l + i + l + ...

Z. Expand log Vl + x in ascending powers of x.

3. Prove that loge 2 = i + yV + _i_ + ^l + ....

4. Show that ,og„(^J = j^^(x + f + f +...).

5. Prove that log 1±^ = 4:X + 4x^ + ^^^ x^ + 20 x^ + -.
1 — 3 X o

6. Show that if x>l, logVx2-l = logx-i-i-^.
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Determinants.

542. Consider two homogeneous linear equations

ctiX + biy = 0,

a^x -^-boi/ = 0',

multiplying the first equation by b.,, the second by bi, sub-

tracting and dividing by x, we obtain

a/^s — 02^i = ..... , (1).

This result is sometimes written

-0.

and the expression on the left is called a determinant. It

consists of two rows and two columns, and in its expanded

form or development, as seen in the first member of (1), each

term is the product of tAvo quantities; it is therefore said

to be of the second order. The line ci^2 is called the prin-

cipal diagonal, and the line bia2, the secondary diagonal.

The letters a^, b^, a,, ?>2 are called the constituents of the

determinant, and the terms cti^g, a2&i ^^'^ called the elements.

THE VALUE OF THE DETERMINANT AFTER CERTAIN
CHANGES.

543. Since = ai^o — fto^i =

it follows that the value of the determinant is not altered by

changing the roivs into columns, and the columns into roivs.

Again, it is easily seen that

^1
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that is, if loe interchange two 7'ows or two columns of the deter-

mincmt, we obtain a determinant ivhich differs from it onbj in

sign.

544. Let us now consider the homogeneous linear equa-

tions

a^x + bii/ + CiZ = 0,

a-^x -h 622/ H- ^2^ = Oj

a^x + 63?/ 4- C3Z = 0.

By eliminating x, y, Zy we obtain

«1 (^2<^3 — ^3^2) + ^1 (^2% — C3«2) + ^1 («'2^3 " «3^2) = 0,

or b<y Co
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546. Minors. From the preceding article,

((,
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Thus it appears that if two adjacent columns, or rows, of

the determinant are interchanyed, the sign of the determinant

is changed, hut its value remains unaltered.

If for the sake of brevity we denote tlie determinant

cti hi Ci

a., 62 C2

a. &3 C3

by {a^boC^, then the result we have just obtained may be

written

{Hh(^z) = - (ctibiCs).

Similarly we may show that

(r-i(/,6,) = - (aicjj^)= 4- (chhCs).

548. Vanishing of a Determinant. If two rows or tivo col-

umns of the determinant are identical the determinant vanishes.

For let D be the value of the determinant, then by inter-

changing two rows or two columns we obtain a determinant

whose value is — 7J; but the determinant is unaltered;

hence D = — D, that is D = 0. Thus we have the follow-

ing equations,

aiAi - a^A^ -f a^A.^ = D,

h^Ai - M2 + hA = 0,

CiAi — C2^2 4- Cg^S = 0.

549. Multiplication of a Determinant. If each constituent

in any row, or in any columii, is midtiplied bij the same factor,

then the determinant is multiplied by that factor.

For mcii
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550. A Determinant expressed as the Sum of Two Other

Determinants. If each constituent in any row, or column,

consists of two terms, then the determinant can he expressed

as the sum of two other determinayits.

Thus we have

«1 + f^l ^1 Cl
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Of these four determinants the first three vanish, Art. 548; thus

the expression reduces to the last of the four determinants ; hence

its value
= _ {c(c2 - ah) - h{ac - b-^) + a(a^ - be)]

= '6abc- «3 - 63 - c3.

Ex. 2. Find the value of 67 19 21 .

We have

39 13 14

81 24 20

67
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and what has been here proved with reference to the first

colamn is equally true for any of the columns or rows;

hence it appears that in reducing a determinant we may
replace any one of the rows or columns by a new row or

column formed in the following Avay

:

Tal:e the constituents of the row or column to he replaced,

and increase or diminish them by any equimultiples of the

corresponding constituents of one or more of the other rows or

columns.

After a little practice it will be found that determinants

may often be quickly simplified by replacing two or more
rows or columns simultaneously : for example, it is easy to

see that

ai-\-pb, bi-qci c.
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The given determinant

3
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EXAMPLES XLVII. a.

Calculate the values of the determinants

:

1. 1 1 1

35 37 34

23 26 25
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APPLICATION TO THE SOLUTION OF SIMULTANEOUS
EQUATIONS OF THE FIRST DEGREE.

552. The properties of determinants may be usefully

employed in solving simultaneous linear equations.

Let the equations be

aix + biy + c^z + d^ = 0,

a>;fc 4- 622/ + c^z -\- d2 = 0,

a^x + ^32/ + C02; + c?3 = ;

multiply them by A-^, — A2, A.^ respectively and add the

results, Ai, A^, A^ being minors of c/j, cu, a^ in the deter-

minant
D

h ^3 ^3

The coefficients of y and z vanish in virtue of the relations

proved in Art. 548, and we obtain

(a^Ai — 662^2 + ^3^3)^ + (t^i^i — f?2^2 + ^^3^3) = 0.

Similarly we may show that

Q),B, - h,B, + h,B.^y + {d,B, - d.rB, + d,B.^ = 0,

and {c,C\ - cA + c,C,)z + (d,C, - d,a + dA) = 0.

Now tti^i — ^2^2 + cisAs = — (biBi — b2B.2 + 63B3)

= CjOi — C2O2 ~r ^3^3 ^^ J-^i

hence the solution may be written

-y z -1
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Ex. Solve a; + 2 ?/ + 3 ^ - 13 r= 0,

2x-\- y + z- 7=0,

3a; + 4?/ + 3S-21 = 0.

We have
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This may be more concisely written in the form

cLi hi Ci d|

«2 ^2 <-'2 ^2

Og h^ Cg ^3

a4 ^4 C4 f?4

= 0;

the expression on the left being a determinant of the fourth

order.

Also we see that the coefficients of f?! taken

with their proper signs are the minors obtained by omitting

the row and column which respectively contain these con-

stituents.

554. More generally, if we have n homogeneous linear

equations

a^i + 62^2 + ^2% + • • • + ^2^'n = ^?

involving n unknown quantities x^, x.,, x^, ••• x,^, these quan-

tities can be eliminated and the result expressed in the form

CU "62 Co'-- IC2

«„ h„ c. • • • A",

The left-hand member of this equation is a determiuant

which consists of n rows and n columns, and is called a

determinant of the ni\\ order.

The discussion of this more general form of determinant

is beyond the scope of the present work ; it will be sufficient

here to remark that the properties which have been estab-

lished in the case of determinants of the second and third

orders are quite general, and are capable of being extended

to determinants of any order.
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555. Signs of the Terms. Although we may always de-

velop a determinant by means of the process described above,

it is not always the simplest method, especially when our

object is not so much to find the value of the whole deter-

minant, as to find the signs of its several elements.

556. The expanded form of the determinant

«2 ^2 ^2

% h Co

= c^hp. — chhoji^i 4- a2^3Ci — (-h^h^z + <^h^h<'2 — ^3^2^!

;

and it appears that each element is the product of three

factors, one taken from each row, and one from each column

;

also the signs of half the terms are + and of the other half

— . When written as above the signs of the several elements

may be obtained as follows. The first element a^lKf^, in which

the suffixes follow the arithmetical order, is positive; we
shall call this the leading element ; every other element may
be obtained from it by suitably interchanging the suffixes.

The sign -f or — is to be prefixed to any element according

as the number of inversions of order in the line of suffixes

is even or odd; for instance in the element O362C1, 2 and 1

are out of their natural order, or inverted with respect to 3

;

1 is inverted with respect to 2 ; hence there are three inver-

sions and the sign of the element is negative ; in the element

fta^iCa there are two inversions, hence the sign is positive.

557. The determinant whose leading element is a^b^t^d^-"

may thus be expressed by the notation

the S ± placed before the leading element indicating the

aggregate of all the elements which can be obtained from it

by suitable interchanges of suffixes and adjustment of signs.

Sometimes the determinant is still more simply expressed

by enclosing the leading element within brackets; thus

(aib2C,fili " •) is used as an abbreviation of 2 ± a/JaCgd^ •••

.

* The Greek letter Sigma.
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Ex. In the determinant {(iiJ^Csche^) what sign is to be prefixed to

the element aih^r^che2 ?

Here 3, 1, and 2 are inverted with respect to 4 ; 1 and 2 are inverted

with respect to 3, and 2 is inverted with respect to 5 ; hence there are

six inversions and the sign of the element is positive.

558. Determinant of Lower Order. If in Art. 554, each

of the constituents h^, Cj, ••• A'l is equal to zero, the deter-

minant reduces to -aiA-^ ; in other words it is equal to the

product of tti and a determinant of the {ii— l)th order, and

we easily infer the following general theorem.

If each of the constituents of the first row or column of a

determinant is zero except the first, and if this constituent is

equal to m, the determinant is equal to m times that deter-

minant of lower order which is obtained by o^nitting the first

column and first roiv.

Also since by suitable interchange of rows and columns

any constituent can be brought into the first place, it follow^s

that if any row or column has all its constituents except

one equal to zero, the determinant can be immediately ex-

pressed as a determinant of lower order.

This is sometimes useful in the reduction and simplifica-

tion of determinants.

Ex. Find the value of

30

6

11

19

Diminish each constituent of the first column by twice the corre-

sponding constituent in the second column, and each constituent of

the fourth colunm by three times the corresponding constituent in the

second column, and we obtain

8 11 20 5

3

15 -2 36 9

7 6 17 4

and since the second row has three zero constituents, this determinant

1 20
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= 3 8 20 5



CHAPTER XLVIII.

Theory of Equations.

559. General Form of an Equation of the nth Degree. Let

2)oX''-\-2JiX''~'^-^P2X^~^-\ +i\-i^+Pn be a rational integral

function of x of w dimensions, and let us denote it by f(x) ;

then f(x)= is the general type of a rational integral equa-

tion of the nth. degree. Dividing throughout by i\, we see

that Avithout any loss of generality we may ta.ke

as the general form of a rational integral equation of any

degree.

Unless otherwise stated the coefficients ^^i, Ps? ••• P» will

always be supposed rational.

If any of the coefficients p^, p^, p^, • • • p,^ are zero, the equa-

tion is said to be incomplete, otherwise it is called complete.

560. Any value of x which makes f{x) vanish is called a

root of the equation fix) = 0.

561. We shall assume that every equation of the form

/'(.x*)=0 has a root, real or imaginary. The proof of this

proposition will be found in treatises on the Theory of

Equations; it is beyond the range of the present work.

562. Divisibility of Equations. If a is a root of the equa-

tion f(;x)= 0, then is f(x) exactly divisible by x — a.

Divide the first member by x — a until the remainder no

longer contains x. Denote the quotient by Q, and the

remainder, if there be one, by E. Then we have

f(x)=Q(x-a)-{-Ii = 0.

450
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Now since a is a root of the equation x = a, therefore

Q(a--a)-\-R = 0,

hence R = 0',

that is, the first member of the given equation is exactly

divisible hj x — a.

563. Conversely, if the first member of f(x)= is exactly

divisible by x — a, then a is a root of the equation.

For, the division being exact,

Q(x — a) = 0,

and the substitution of a for x satisfies the equation ; hence

a is a root.

DIVISION BY DETACHED COEFFICIENTS.

564. The work of dividing one multinomial by another

may be abridged by writing only the coefficients of the

terms. The following is an illustration.

Ex. Divide 3x5^8a;4-5x3+ 26x2-33a:+ 26 by x3-2a^2_4x+8.

1 + 2 + 4-8)3-8- 5 + 26-33 + 26(3 -2 + 3

3 + 6 + 12-24
-2+ 7 +
-2- 4-
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Let lis take the example of the preceding article. The
arransreinent of the work is as follows

:

1
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second term of the quotient, which multiplied by — 2 gives 14 for the

second term of the second horizontal line ; the addition of 14 and
gives 14 for the third term of the quotient, which multiplied by — 2

gives — 28 for the third term of the second line, and so on.

567. Number of Roots. Every equation of the n\h degree

has n roots, and no more.

Denote the given equation hjf(x)= 0, where

The equation /(.7;)= has a root, real or imaginary ; let this

be denoted by aj; then /(a*) is di^^sible hjx — Gi, so that

/(..)= (,.-a,)/,(x),

where fi(x) is a rational integral function of n — 1 dimen-

sions. Again, the equation f(x)= has a root, real or im-

aginary ; let this be denoted by a., ; then fi(x) is divisible by
X — Qv, so that

A(x)= (x-a,)Mx),

where f2(x) is a rational integral function of n — 2 dimensions.

Thus f(^^= (x - a,)(x - a,)Mx).

Proceeding in this way, we obtain

/(.v.)=.(.^._a,)(.r-«,)-(-^--«n).

Hence the equation f(x)= has n roots, since f(x) vanishes

w^hen X has any of the values aj, a^, czs, ••• ««•

Also the equation cannot have more than n roots ; for if x

has any value different from any of the quantities a^, a^,

an,

'

.
. «„, all the factors on the right are different from zero,

and therefore f(x) cannot vanish for that value of x.

In the above investigation some of the quantities rtj, a.,,

ttn, ... a^ may be equal ; in this case, however, we shall sup-

pose that the equation has still n roots, although these are

not all different.

568. Depression of Equations. If one root of an equation

is known it is evident from the preceding paragraph that we
may by division reduce or dej^ress the equation to one of the

next lower degree containing the remaining roots. So if k
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roots are known we may depress the equation to one of the

(n — k)t\i degree. All the roots but two being known, the

depressed equation is a quadratic from which the remaining

roots are readily obtained.

569. Formation of Equations. Since f(x)= (x—a^(x—o,^

••(u.- — (7„j [Art. '307], we see that an equation may be formed

by mtbtracting each root from the unknovm quantity and j^larAng

the continued product of the binomial factors thus formed equal

to 0.

Ex. Form the equation whose roots are 1,-2, and |.

.-. 2x3 + ^2 -5s: + 2 = 0.

EXAMPLES XLVIII. a.

1. Show that 4 is a root of r^ - 5 3r2 _ 2 j: + 24 = 0.

2. Show that + 3 is a root of r^ + 7 x^ + 7 x + 15 = 0.

3. Show that - i is a root of 6 x^ + 17 x^ _ 4 x - 3 = 0.

4. Show that f is a root of 10 x'' - 3 a;'^ _ 9 ^ + 4 = 0.

5. One root of x^ + 6 x2 - 6 x - 63 = is 3 ; find the others.

6. One root of x^ - 23 x^ + 166 x - 378 = is 7 ; find the others.

7. One root of x^ - 2 x- + 6 x - 9,^^ = is
t^ ; what are the others ?

8. Two roots of x^ - 15x- + lOx + 24 = are 2 and 3 ; find the

others.

9. Two roots of x* - 3 x'' - 21 x- + 43 x 4- 60 = are 3 and 5 ; find

the others.

10. One root of x^ + 2 axr + 5 a-x + 4 a' — is — a ; what are the

others ?

11. Form the equation whose roots are — 1, — 2, and — 5.

12. Form the equation whose roots are — 2, — 3, 4-
i,
and — \.

570. Relations between the Roots and the Coefficients. Let

us denote the equati(jn l)y

and the roots by a, b, c,'-'k', then we have identically

of +pix"-^ +i>2^~^ H \- Pn-i^ -\-P'"

= (x — a)(x — b)(x — c)--'(x — k)
;



THEORY OF EQUATIONS. 455

hence, by multiplication, we have

= X"* - ^i.i-"-^ + S..V--' + (- iy''S„_,x + (- 1)''*^„.

Equating the coefficients of like powers of x in this

identit}^, we have

Ih = ^2)

in which Si stands for the sum of the roots a, b, c -" k; S2

stands for the sum of the products of the roots taken two

at a time, and so on to S„, which equals the continued

product of all the roots. That is

:

(1) The coefficient of the second term icith its sign changed

equals the sum of the roots.

(2) The coefficient of the third term equals the sum of

all the products of the roots taken two at a time.

(3) The coefficient of the fourth term icith its sign changed

equals the sum of all the products of the roots taken three

at a time, and so on.

(4) The last term equals the continued product of all the

roots, the sign being -\- or — according as n is even or odd.

571. It follows that if the equation is in the general form

:

(1) The sum of the roots is zero if the second term is

wanting.

(2) One root, at least, is zero if the last term is wanting.

572. The student might suppose that the relations estab-

lished in the preceding article would enable him to solve

any proposed equation ; for the number of the relations is

equal to the number of the roots. A little reflection will

show that this is not the case; for suppose we eliminate

any n—l of the quantities a, h,c, -•• k, and so obtain an equa-

tion to determine the remaining one; then since these quan-

tities are involved symmetrically in each of the equations,
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it is clear that we shall always obtain an equation having

the same coefficients ; this equation is therefore the original

equation with some one of the roots a, h, c, "- k substituted

for X.

Let us take for example the equation

and let a, 6, c be the roots ; then

ab -\- ac -\- be = -\- P2,

ahc = —Pz.

^Multiply these equations by a-, — a, 1 respectively and

add ; thus o? = — PiCr —pM — p^,

that is, a^ 4-i>i«' +iV^ + pz = 0,

which is the original equation with a in the place of x.

The above process of elimination is quite general, and

is applicable to equations of any degree.

573. If two or more of the roots of an equation are con-

nected by an assigned relation, the j)roperties proved in Art.

570 ^^-ill sometimes enable us to obtain the complete solution.

Ex. 1. Solve the equation Ax^ — I^ x- + 23 z + 18 = 0, having given

that the roots are in arithmetical progression.

Denote the roots hj a — h, a, a -\- h ; then the sum of the roots is

3 n ; the sum of the products of the roots two at a time is 3 a- — h-
;

and the product of the roots is a (a-— 6^); hence we have the equations

3a = 6, 3a2 - 62 = ;5^, a{(fi - 62) = _ |

;

from the first equation we find a = 2, and from the second 6 = -t ^,

and since these values satisfy the third, the three equations are con-

sistent. Thus the roots are — \, 2, f

.

Ex. 2. Solve the equation 2A.t^ - \\x- - Q^x + \b = Q, one root

being double another.

Denote the roots by a, 2 a, 6 ; then we have

.3 a + 6 = f., 2 a2 + 3 a6 = - ^J-, 2 a% = - V-

From the first two equations, we obtain

8a2-2a-3 = 0;

.-. a = I or — \, and h = — ^ or f |.
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It will be found on txial that the values a = — i, 6 = ff do not

satisfy the third equation 2 a-b = — ^ ; hence we are restricted to the

values (7 = |, h =— ^'

Thus the roots are |, |, — f

.

574. Although we may not be able to find the roots of

ail equation, we can make use of the relations proved in

Art. 570 to determine the values of sj^mmetrical * functions

of the roots.

Ex. Find the sum of the squares and of the cubes of the roots of the

equation .r^ — px- + qx — r = 0.

Denote the roots by a, b, c ; then a + b -\- c =p, be + c<i + ab = q.

Now rt2 4. i,-2 ^ c- =(a-{-b -t c)'^ -2{bc -\- cu + ab) =p^ — 2q.

Again, substitute a, b, c for jc in the given equation and add ; thus

^3 _|. 1$ 4. c^-p(a^ ^ i'2 ^ c^^^ q(^a -r b + c)- Sr = ;

.-. a3 + ?>s_j- c^ = p{p^ - 2 q)- pq -{- S r = p^ - Spq + Sr.

EXAMPLES XLVIII. b.

Form the equation whose roots are :

1. I, I, iv'3. 2. 0, 0, 2, 2, -3, -3.
3. 2, 2, — 2, - 2, 0, 6. 4. a + b. a - b, - a + b. - a — b.

Solve the equations

:

5. .r* — 16 .r^ + 86 x- — 176 jc + 105 = 0, two roots being 1 and 7.

6. 4 .(-3 _|_ 1(5 X- — 9x — 06 = 0, the sum of two of the roots being

zero.

7. 4 x^ + 20 x'^ — 23 JC -f 6 =0, two of the roots being equal.

8. 3 x^ — 26 x"^ + 52 X — 24 = 0, the roots being in geometrical pro-

gression.

9. 2x^ — X- — 22 .r — 24 = 0, two of the roots being in the ratio of

3:4.

10. 24 .r^ + 46 J*- -t- 9^ — 9 = 0, one root being double another of

the roots.

11. S.r^ — 2.r^ — 27.r- + 6.r -I- 9 = 0, two of the roots being equal

but opposite in sign.

* A function is said to be symmetrical with respect to its variables

when its value is unaltered by the interchange of any jmir of them :

thus X + y + z, be + ca + ab/x^ + y^ + 2^ - xy:: are symmetrical func-

tions of the first, second, and third de^ees respectively. [See An.

319.]
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12. 54 x^-S0x'^-26x+ 10 = 0, the roots being in geometrical pro-

gression.

13. 32 x^ — 48 x"2 + 22 ic — 3 = 0, tlie roots being in arithmetical pro-

gression,

14. 6x4 - 29x3 + 40x2 - 7 a: - 12 = 0, the product of two of the

roots being 2.

15. X* - 2 x^ - 21 x2 + 22 X + 40 = 0, the roots being in arithmetical

progression.

16. 27 x4 - 195 x3 + 494 x^ _ 520 x + 192 = 0, the roots being in

geometrical progression.

17. 18x3 + 81 x2 + 121 X + GO = 0, one root being half the sum of

the other two.

18. Find the sum of the squares and of the cubes of the roots of

x* + qx^ + rx + s = 0.

575. Fractional Roots. An equation ivhose coefficients are

integers, that of the first term being unity, cannot have a

rational fraction as a root.

If possible suppose the equation

lias for a root a rational fraction in its lowest terms, repre-

sented by -. Substituting this value for x and multiplying
h

through by 6"^\ we have

h

Transposing,

This result is impossible, since it makes a fraction in its

lowest terms equal to an integer. Hence a rational fraction

cannot be a root of the given equation.

576. Imaginary Roots. In an equation icith real coeffi-

cients imaginary roots occur in pairs.

Suppose that f{x)= is an equation with real coefficients,

and suppose that it lias an imaginary root a -f ih
;
we shall

show that a — ib is also a root.
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The factor of f(;x) corresponding to these two roots is

(x — a — ib)(x — a -|- ib), or (x — af -\- 61

Let fix) be divided by (x — ay + h^ ; denote the quotient

by Q, and the remainder, if any, by Rx + W ; then

fix) =^ q\ix - af + h''\-\- Rx + R'.

In this identity put x = a-{- ib, then f(x)= by hypothesis

;

also i;x -ay + b'' = 0', hence R (a + ib) -\-R' = 0.

Equating to zero the real and imaginary parts,

Ra + R' = 0, Rb = 0;

and b by hypothesis is not zero,

.-. R = and R' = 0.

Hence fix) is exactly divisible by i^x — a)^ + 6^, that is, by

(x — a— ib) ix — a-^ ib)
;

hence x = a — ib is also a root.

577. In the preceding article we have seen that if the

equation f(x)= has a pair of imaginary roots a ± ib, then

(x — ay + 6^ is a factor of the expression /(.»).

Suppose that a ± ib, c ± id, e ± ig, • • • are the imagi-

nary roots of the equation fix)= 0, and that * ^ i;x) is the

product of the quadratic factors corresponding to these

imaginary roots ; then

^ix)={ix- af + bmix - cy + dm(x - ey + f\^-.

Now each of these factors is positive for every real value of

X ; hence cf) ix) is always positive for real values of x.

578. As in Art. 576 we may show that in an equation with

rational coefficients, surd roots enter in pairs; that is, if

a + -^b is a root then a — ^b is also a root.

Ex. 1. Solve the equation 6 a;* - 13 x^ - 35 a:^ - x + 3 = 0, having

given that one root is 2 — -^3.

* The Greek letter Phi.
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Since 2 — y'S is a root, we know that 2 + y'S is also a root, and

corresponding to this pair of roots we have the quadratic factor

x2-4x + 1.

Also

6a;4 - 13 a;3 - 35x2 - X + 3 = (x2 - 4x + 1)(6 a:2 + 11 X + 3) ;

hence the other roots are obtained from

6x-^ + llx + 3=: 0, or (3x + l)(2x + 3)=0;

thus the roots are - i, - h 2 + V^? 2 - ^d.

Ex. 2. Form the equation of the fourth degree with rational coeffi-

cients, one of whose roots is ^2 + V— 3.

Here we must have y'2 + v^— 3, ^2— V — 3 as one pair of roots,

and — y'2 + V— 3, — y'2 — V— 3 as another pair.

Corresponding to the first pair we have the quadratic factor

x'^ — 2y/2x + 6, and corresponding to the second pair we have the

quadratic factor

x2 +2^2x4-5.

Thus the required equation is

(x2 + 2 V2 X + 5) (x2 - 2 V2 x + 5) =0,

or (x2 + 5)2 -8x2 = 0,

or x4 + 2 x2 + 25 = 0.

EXAMPLES XLVIII. C

Solve the equations

:

1. 3 x* - 10 x3 + 4 x2 - X - 6 = 0, one root being ^ "^^~^ -

2. x* - 36 x2 + 72 X - 30 = 0, one root being 3 - ^3.

3. x* + 4 x^ + 5 x2 + 2 X - 2 = 0, one root being - 1 + V- 1.

4. X* + 4 x^ + 6 x2 + 4 X + 5 = 0, one root being V— 1.

TRANSFORMATION OF EQUATIONS.

579. The discussion of an equation is sometimes simpli-

fied by transforming it into another equation whose roots

bear some assigned relation to those of the one proposed.

Such transformations are especially useful in the solution of

cubic equations.
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580. To transform an equation into another whose roots are

those of the original equation with their signs changed.

Let /(x)= be the equation.

Put — y for x\ then the equation /(— y)= is satisfied

by every root of f(x)= with its sign changed ; tlius the

required equation is /(— y)= 0.

If the given equation is

then it is evident that the required equation will be

therefore the transformed equation is obtained from the

original equation by changing the sign of every alternate term

beginning with the second.

Note. If any term of the given equation is missing it must be

supplied with zero as a coefficient.

Ex. Transform the equation cc*-17x2-20x-6 = into another

which shall have the same roots numerically with contrary signs. We
may write the equation thus :

x4 + 0x3- 17a:2-20a:-6 = 0.

By the rule, we have

a;4 _ x3 - 17 x2 + 20 x - 6 = 0,

or x4- 17x'^ + 20x-6 = 0.

581. To transform an equation into another whose roots are

equal to those of the original equation multiplied by a given

factor.

Let fix)= be the equation, and let q denote the given

quantity. Put y = qx, so that when x has any particular

y
value, y is q times as large; then x = -, and the required

equation is

?)"--(i)"«(r—©"=»
Multiplying by fy", we have
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Therefore the transformed equation is obtained from the

original equation by multiplying the second term by the given

factor, the third term by the square of this factor, and so on.

582. The chief use of this transformation is to clear an

equation offractional coefficients.

Ex. Remove fractional coefficients from the equation

y
Put X =- and multiply each term by cf ; thus

By putting g = 4 all the terms become integral, and on dividing by

2, we obtain
ys ^Sy- -y + Q = 0.

583. To transform an equation into another whose roots exceed

those of the original equation by a given quantity.

Let f(;x)= be the equation, and let h be the given quan-

tity. Assume y = x -\- h, so that for any particular value

of X, the value of y is greater by h ; thus x = y — h, and the

required equation is f(;y — h)= 0.

Similarly if the roots are to be less by h, we assume

y — X — h, from which we obtain x = y -\- h, and the required

equation is f(y -f h)= 0.

584. If 71 is small, this method of transformation is

effected with but little trouble. For equations of a higher

degree the following method is to be preferred

:

Let f(x)= poO;" + p^x''-^ + p2X^-'- + • • • + i>.-i^' + Pn J

put x = y -\- h, and suppose that f(x) then becomes

^02/" + ^i2/"~' 4- ^2^"' + • • • + gn-iV + g„.

Now y = X — h; hence we have the identity

= ryo(x- - hy + q,(x - hf-' + • • • + fy„_ ,{x - h) + q„ ;

therefore q„ is the remainder found by dividing f(x) by

x — h; also the quotient arising from the division is

q,(x - hy ' + qi(:x - hy - + ••. + ^,._i.
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Similarly g„_i is the remainder found by dividing the last

expression by x — h, and the quotient arising from the divi-

sion is

qo^x - hf -' + q,(:x - h)-^ + • • • + qn-^2 ;

and so on. Thus g„, g^„i, g„_2? ••• ma^y be readily found by
Synthetic Division. The last quotient is go? ^-ncl is obviously

equal to p^.

Hence to obtain the transformed equation,

Divide f{x) by x±h according as the roots are to be greater or

less by h than those of the original equation, and the remainder

ivill be the last term of the required equation. Divide the quo-

tient thus found by x ± h, and the remainder will be the coeffi-

cient of the last term but one of the required equation; and
so on.

Ex. Find the equation whose roots exceed by 2 the roots of the

equation
4x4 + 32x3 + 83x2+76x4-21 =0.

The required equation will be obtained by substituting x — 2 for x

in the proposed equation ; hence in Horner's process we employ x + 2

as divisor, and the calculation is performed as follows :

+ 24



464 ALGEBRA.

Let the given equation be

_p„a^" + PiX""-^ + V^""'^^ H V Pn-i ^ + Pn = ;

then if y = x — h, we obtain the new equation

Po(y + hy +2h(y + ^0'"' -^I'^iv + ^O""' + ••• +k = o,

which, when arranged in descending powers of y, becomes

If the term to be removed is the second, we put n2)Qh-\-2)i=0,

so that h = — : if the term to be removed is the third,

we put

'l^^pji'-^{n - l)pji +p, = 0,

and so obtain a quadratic to find h ; and, similarly, we may
remove any other assigned term.

Sometimes it will be more convenient to proceed as in the

following example.

Ex. Remove the second term from the equation

px^ + qoiP + rx -{- s = 0.

q
Let a, &, c be the roots, so that a-\- b -r c = — -- Th6n if we

increase each of the roots by —-, in the transformed equation the

q q
sum of the roots will be equal to h - ; that is, the coefficient of

the second term will be zero. ^ ^
Hence the required transformation will be effected by substituting

X —^ for X in the given equation.
op
As the general type of a cubic equation can be reduced to a more

simple form by removing the second term, the student should carefully

notice that the transformation is effected by substituting x minus the

coefficient of the second term divided by the degree of the equation,

for x in the given equation.
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586. To transform an equation into another whose roots are

the reciprocals of the roots of the proposed equation.

Let /(.«) = be the proposed equation
;
put y = -, so that

1 • • /1\
^

x = -\ then the required equation is f{-] = 0.

y \yJ

One of the cliief uses of this transformation is to obtain

tlie values of expressions whicli involve symmetrical func-

tions of negative powers of the roots.

Ex. If a, 6, c are the roots of the equation

x^ — poc? -{ qx — r — 0,

find the vakie of -^ + 7^ + -o"
a- h- c2

Write - for x, multiply by ?/3, and change all the signs ; then the
y

resulting equation

has for its roots

hence * S

r>f - qff + i^y - 1 = 0,

111.
a u c

1 = 2 V— =^-
a r ah r*

587. Reciprocal Equations. If an equation is unaltered

by changing x into -, it is called a reciprocal equation.
X

If the given equation is

X'' -\-p^X''-^ +P2^''~~ -\ V Pn-2^^ + Pn-V^ + Pn = 0,

the equation obtained by writing - for x, and clearing of

fractions, is

j^x"" +p„_ia5""^ + Pn-2^''~^ H +P2^^ +Pl^ + 1 = 0.

If these two equations are the same, we must have

Pn-l Pn-2 Ih Pi 1

* S 1 stands for the sum of all the terms of which - is the type.
a a

2h •
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from the last result we have j>„ = ± 1, and thus we have

two classes of reciprocal equations,

(i.) If p,, = 1, then

2h=2\-l, P2=l\-2, lh=Pn-3, •••;

that is, the coefficients of terms equidistant from the begin-

ning and end are equal.

(ii.) If 2\ = — 1) then

Pl = - l\-l, 2h = - Pn-2, Ps = - Pn-A, • • •
;

hence if the equation is of 2 m dimensions p^ = —i)„„ or

2j^ = 0. In this case the coefficients of terms equidistant

from the beginning and end are equal in magnitude and
opposite in sign, and if the equation is of an even degree

the middle term is wanting.

588. Standard Form of Reciprocal Equations. Suppose

that f(x) = is a reciprocal equation.

If f(x) = is of the first class and of an odd degree it

has a root — 1 ; so that f(x) is divisible by x-\-l. If <f>(x)

is the quotient, then cf>(x) = is a reciprocal equation of the

first class and of an even degree.

If /(.y) = is of the second class and of an odd degree,

it has a root -+- 1 ; in this case/(.T) is divisible by x — 1, and

as before <^(.t) = is the reciprocal equation of the first

class and of an even degree.

If f(x) = is of the second class and of an even degree,

it has a root + 1 and a root — 1 ; in this case f(x) is divisi-

ble by a^ — 1, and as before (f>(x) = is a reciprocal equa-

tion of the first class of an even degree.

Hence ariy reciprocal equation is of an even degree icith its

last ter7n positive, or can he reduced to this form ; which may
therefore be considered as the standard form of reciprocal

equations.

589. A reciprocal equation of the standard form can be reduced

to an equation of half its dimensions.

Let the equation be

aa^"* + 6a;-"*-^ -f- c^ji^""-"^ -\ + kx''' H \- ex" + hx -\-a = 0\



THEORY OF EQUATIONS. 467

dividing by .«"' and rearranging the terms, we have

af+^ ^ xPj\ xj \ xF-^J

hence writing z for ;« + -, and giving to p in succession the
X

values Ij 2, 3 ••• we obtain

x' + \ = z'-2',
x^

x^'^ - = z(z' - 2) - z = z' - 3z:
x^

x'-^-^ = z{f - 3z) - (z^ - 2) = z' - ^z' -{-2

;

X*

and so on ; and generally x"^ -\ is of m dimensions in z,

X
and therefore the equation in z is of m dimensions.

590. To find the equation whose roots are the squares of

those of a proposed equation.

Let f(x)= be the given equation ; by putting y = X',

we have x = ^y, and therefore the required equation is

/(V2/)=0-

Ex. Find the equation whose roots are the squares of those of the

equation
x3 + pix^ + P2X + p3 = 0.

Putting X = y/]i^ and transposing, we have

(2/+jP2)V2/=-(Pi2/+i'3);

whence (1/ -\-2p2y -V IH^) y = Pi^v'^ + 2 pip^y + ps^,

or 1/3 +(2i92 -i?i2)?/2 + (p22 - 2pipz)y -ps^ = 0,
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EXAMPLES XLVIIL d.

1. Transform the equation rc^ — Sx* + Oa:^ — 9.x2 -f ox — 1 =
into another which shall have the same roots with contrary signs.

2. Transform the equation 2x^ — 4:X^ + 7x — 3 = into another

whose roots shall be those of the first multiplied by 3.

3. Transform the equation x^ — 7x — 6 = into another whose
roots shall be those of the first multiplied by — |.

4. Transform the equation x^ — 4^^ + ix — ^ = into another

with integral coefficients, and unity for the coefficient of the first term.

5. Transform the equation 3 x* — 5x3 + x^ — x + 1 = into another

the coefficient of whose first term is unity.

6. Transform the equation x^ + 10 x^ -f 39 x^ + 76 x + 65 = into

another whose roots shall be greater by 4.

7. Transform the equation x* — 12 x^ + 17 x'^ — 9x + 7 = into

another whose roots shall be less by 3.

8. Diminish by 1 the roots of the equation

2x4- 13x2 + 10x- 19 = 0.

9. Find the equation whose roots are greater by 4 than the corre-

sponding roots of x4 + 16 x3 + 72 x^ + 64 x - 129 = 0.

10. Solve the equation 3 x^ - 22 x^ + 48 x - 32 = 0, the roots of

which are in harmonical progression.

11. The roots of x^ — 11 x'^ + 36x — 36 = are in harmonical pro-

gression ; find them.

Remove the second term from the equations

:

12. x3-6x2 + 10x-3 = 0.

13. x4 + 4 x3 + 2 X- - 4 X - 2 = 0.

X 3
14. Transform the equation x^ - — - = into one whose roots

4 4
exceed by | the corresponding roots of the given equation.

15. Diminish by 3 the roots of the equation

x5 - 4 x4 + 3 x2 - 4 X + 6 = 0.

16. Find the equation each of whose roots is greater by unity than

a root of the equation x'' — 5 x^ -f- 6 x — 3 = 0.

17. Find the equation whose roots are the squares of the roots of

x4 + x3 + 2 x2 -f X + 1 = 0.

18. Form the equation whose roots are the cubes of the roots of

x3 + 3x2 + 2 = 0,
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If «, h, c are the roots of x^ -{- qx -{ r = 0, form the equation whose
roots are

19. ka-\ kb-\ kc-K 21. ?^+^, ^:^+^, «^^.
a^ b^ c-

20. 6%^ c%^ a-^6-^. 22. 6c + ^, ca + ^, a6 + ^.

Solve the equations

:

23. 2x4 + x3-^6x2 + a: + 2 = 0.

24. a:4 _ iqjcS _|. 26x'^ - lOx + 1 = 0.

25. x^ - 5 x* + 9 ic^ - 9 a;2 + 5 a: - 1 = 0.

26. 4 a:6 _ 24 a;5 + 57 x* - 73 a:^ + 57 x^ - 24 .r + 4 = 0.

DESCARTES' RULE OF SIGNS.

591. When each term of a series has one of the signs 4-

and — before it, a continuation or permayience occurs when
the signs of two successive terms are the same : and a change

or variation occurs when the signs of two successive terms

are opposite.

592. Descartes* Rule. Li any equation, the number of pos-

itive roots cannot exceed the number of variations of sign, and

in any complete equation the number of negative roots cannot

exceed the number ofX)ermanences of sign.

Suppose that the signs of the terms in a multinomial are

+ + — — + — — |-_-|-_5we shall show that if

this multinomial is multiplied by a binomial whose signs

are -1- — , there will be at least one more change of sign in

the product than in the original multinomial.

Writing only the signs of the terms in the multiplica-

tion, we have
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a double sign^ spoken of as an ambiguity, being placed wher-

ever there is a doubt as to whether the sign of a term is

positive or negative.

Examining the product we see that

(i.) An ambiguity replaces each continuation of sign in

the original multinomial

;

(ii.) The signs before and after an ambiguity or set of

ambiguities are unlike

;

(iii.) A change of sign is introduced at the end.

Let us take the most unfavorable case and suppose that

all the ambiguities are replaced by continuations ; from (ii.)

we see that the number of changes of sign will be the same
whether we take the upper or the lower signs ; let us take

the upper ; thus the number of changes of sign cannot be

less than in

+ + -- + + - + -+,
and this series of signs is the same as in the original multi-

nomial with an additional change of sign at the end.

If then we suppose the factors corresponding to the nega-

tive and imaginary roots to be already multiplied together,

each factor x—a corresponding to a positive root introduces

at least one change of sign ; therefore no equation can have

more positive roots than it has changes of sign.

To prove the second part of Descartes' Rule, let us sup-

pose the equation complete and substitute — y for x
;
then

the permanences of sign in the original equation become

variations of sign in the transformed equation. Now the

transformed equation cannot have more 2)ositive roots than

it has variations of sign, hence the original equation cannot

have more negative roots than it has permanences of sign.

Whether the equation f{x)= be complete or incomplete

its roots are equal to those of /(— a;) but opposite to them

in sign; therefore the negative roots of /(^)=0 are the

positive roots of /(— x)=0-, but the number of these posi-

tive roots cannot exceed the number of variations of sign in

f{—x)] that is, the number of negative roots of /(a;)=0

cannot exceed the number of variations of sign in /(— x).
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We may therefore enimciate Descartes'' Rule as follows:

An equation f(x) = cannot have more positive roots than

there are variations of sign in f(;x), and cannot have more
negative roots than there are variations of sign inf(—x).

Ex. Consider the equation cc^ + 5 x^ — x^ + 7 x + 2 = 0.

Here there are two changes of sign, tlierefore there are at most two
positive roots.

Again f(—x) = — x^-\-5x^ + x^ — lx-\-2, and here there are three

changes of sign, tlierefore the given equation has at most three nega-

tive roots, and tlierefore it must have at least four imaginary roots.

593. It is very evident that the following results are in-

cluded in the preceding article.

(i.) If the coefficients are all positive, the equation has

no positive root ; thus the equation x^ + o;^ + 2 x + 1 =
cannot have a positive root.

(ii.) If the coefficients of the even powers of x are all of

one sign, and the coefficients of the odd powers are all of

the contrary sign, the equation has no negative rootj thus

the equation

x' -j-x'-2x'-\-x' -3x^ + 7 X- 5 =

cannot have a negative root.

EXAMPLES XLVIII. e.

Find the nature of the roots of the following equations :

1. x4 + 2x3 - 13 x2 - 14 X + 24 = 0.

2. x4 - 10 x3 + 35 x2 - 50 X + 24 = 0.

3. 3x* + 12x2 + 5x-4 = 0.

4. Show that the equation 2 x^ — x* + 4 x^ - 5 = has at least four

imaginary roots.

5. What may be inferred respecting the roots of the equation

xio_4x6 + x^-2x-3 = 0?

6. Find the least possible number of imaginary roots of the equa-

tion x^ - x5 + x4 + x"-^ + 1 = 0.
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594. Derived Functions. To find the value off(x-\-h), ivhen

f(x) is a rational integral function of x.

Let f(x)= PqX"" + i\x''- 1 + p^''-" H h Pn-i^ + Pn ; then

fix 4- li)= p^i:x + hf -^p^ix -f- hy-^ +po^{x + hy-^' +'"

Expanding each term and arranging the result in ascend-

ing powers of h, we have

4- h\np,x^^-^+ (^n - l>i.T"-^+(vi - 2)p.pf-^-\- ••. +2\-i\

-\-^~\n{n - l)p^x--'+{n - l)(^n - 2)p,x-'-\- ... + 2p,_,\

+~
. . . •

+ ^5n(n-l)(H-2)...2.1poS.
1
71

This result is usually written in the form

fix + /o=/w+ ¥'(^o+|V'(^*)+||V"(^)+ - +|V''(^x

and the functions f{x), fix), f\x), ••• are called the first,

second, third, ... derived functions of f{x).

Examining the coefficients of h, ,— •••, we see that to obtain

f'(x) from fix) tve nudtiply each term in fix) by the index of x

in that term, and then diminish the index by unity.

Similarly we obtain fix), f"'(x), ....

595. Equal Roots. If the equation f{x)= has r roots equal

to a, then the equation /'(x)= will have r—1 roots equal to a.

Let (f>{x) be the quotient when fi;x) is divided by (x— aY;

then flx) = (x-aycf>(x).

Write X -{- h in the place of x
;
thus

fi^x + h)= (x - a + hycf> i^x + h)
;
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.•./(x)+/i/(x) + |/'(a;)+...

={(x - ay + r(x - ay-^h + ...}{0(x)+ /i0'(a;) + ^0"(x)+ .••}.

In this identity, by equating the coeflficients of /<, we have

f(x)= r{x - aY-'<i,(x) + (^x - aycj>\x).

Thus /' (x) contains the factor x — a repeated r — 1 times

;

that is, the equation f\x)= has r — 1 roots equal to a.

Similarly we may show that if the equation f(^x)== has

s roots equal to b, the equation /'(it*)= has s — 1 roots equal

to b ; and so on.

From the foregoing proof we see that if f(x) contains a

factor (x — ay, then /'(a?) contains a factor (x — ay~'^ ; and

thus f(;x) and /'(a?) have a common factor (a; — ay~^. There-

fore if f(x) and f'(x) have no common factor, no factor in

f(^x) will be repeated ; hence the equation f(x) = has or

has not equal roots, according as f(x) and f'{x) have or have

not a common factor involviyig x.

596. It follows that in order to obtain the equal roots of

the equation /(x) = 0, ive must first find the highest common
factor of f{x) and f\x), and then placing it equal to zero,

solve the resulting equation.

Ex. Solve the equation x*— 11 ^3+ 44 cc2_ 7(5 ^ ^ 48 = o, which has

equal roots.

Here f{x) = x^ - \\x^ + ^ix'^ - IQx + 48,

/(a:)=4Gc3_33a^2 + 88a;- 76;

and by the ordinary rule we find that the highest common factor of

fix) and f{x) is a; — 2 ; hence {x — 2)2 is a factor of f{x)\ and

/(x) = (x-2)2(a;2-7x+12)

= (x-2y\x-^){x-4)]
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LOCATION OF THE ROOTS.

597. If the variable x changes continuously from a to 6 the

function f(x) will change continuously from f(a) to f{b).

Let c and c -\- h be any two values of x lying between a

and b. We have

/(o + h) -/(c) = //'(c) +|/"(c) + ... +^r(c);

and by taking h small enough, the difference between f(c-\-h)

and /(c) can be made as small as we please ; hence to a small

change in the variable x there corresponds a small change in

the function f(x), and therefore as x changes gradually from

a to h, the function /(a;) changes gradually from /(a) to f(b).

598. It is important to notice that we have not proved

that f(x) always increases from f(a) to f(b), or decreases

from f(a) to f(b), but that it passes from one value to the

other without any sudden change ; sometimes it may be in-

creasing and at other times it may be decreasing.

599. If f(a) and f(b) are of contrary signs then one root of

the equation f(x) = must lie between a and b.

As x changes gradually from a to b, the function f(x)

changes gradually from f(a) to f(b), and therefore must
pass through all intermediate values ; but since /(a) and

f(b) have contrary signs the value zero must lie between

them
; that is, f(x) = for some value of x between a and b.

It does not follow that/(a;) = has only one root between

a and b ; neither does it follow that if /(a) and f(b) have

the same sign f(;x) = has no root between a and b.

600. Every equation of an odd degree has at least one real

root whose sign is opposite to that of its last term.

In the function f(x) substitute for x the values + ^, 0,

— 00, successively, then

/(+^)= + ^, /(0)=p,., f(-oo) = -c^.
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If 2^n is positive, then f(x) = has a root lying between

and — 00, and if p^ is negative f(x) = has a root lying

between and + go.

601. Every equation which is of an even degree and has its

last term negative has at least two real roots, one positive and

one negative.

For in this case

/(+«))= + CO, f(0)=p,, f(-c^)= + c^-

but 2\ is negative ; hence f(x) = has a root lying between

and + CO, and a root lying between and — go.

602. If the expressions f(a) and f(b) have contrary signs,

an odd number of roots of f(x) = will lie between a and 6

;

and if f(a) and f(b) have the same sign, either no root or an

even number of roots will lie between a and b.

Suppose that a is greater than b, and that c, d, e, ••• A;

represent all the roots of f(x) = 0, which lie between a and

b. Let cfi (x) be the quotient when f(x) is divided by the

product (x — c)(x — d) (x — e) • • • (a; — k)
;
then

f(x) = (x — c) (x — d)(x — e) • • • (x — 'k)4> (^)-

Hence /(a) = (a — c){a — d) (a — e) • • • (a — k)cf) (a).

jXb) = (& - c) (6 - d) (5 - e) ... (6 - k)
<t>

(b).

Now (^ (o) and <^ (b) must be of the same sign, for other-

wise a root of the equation <^ (x) = 0, and therefore of

f(x) = 0, would lie between a and b [Art. 599], which is

contrary to the hypothesis. Hence if /(«) and f(b) have

contrary signs, the expressions

(a — c)(a — d) (a — e) ... (a — k),

(b-c){b-d){b-e) ... ib-k)

must have contrary signs. Also the factors in the first

expressions are all positive, and the factors in the second

are all negative ; hence the number of factors must be odd,

that is, the number of roots c, d, e, " • k must be odd.

Similarly if /(a) and /(6) have the same sign the num-
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ber of factors must be even. In this case the given con-

dition is satisfied if c, d, e, --• k are all greater than a, or

less than 6; thus it does not necessarily follow that /(a;)=
has a root between a and b.

EXAMPLES XLVIII. f.

1. Find the successive derived functions of 2x'^—x^—2x^-\-5x— l.

Solve the following equations which have equal roots :

2. x'^ - 9x2 + 4 x + 12 = 0. 3. X* - 6x^ + I2x- - lOx -\- S = 0.

4. x^ - 13 ic* + 07 x^ - 171 x^ + 216x- 108 = 0.

5. x^ -x^ + 4:x^ -?>x + 2 = 0.

6. Sec* _|. 4 a;3 _ 18 ;^2 + 11 a; _ 2 = 0.

7. Show that the equation lOx^ — 17^2 + a: + 6 = has a root

between and — 1.

8. Show that the equation x* — 5x^ -\- Sx- + S5x — 10 = has a

root between 2 and 3, and one between — 2 and — 3,

9. Show that the equation x* — 12x2 + 12x — 3 = has a root

between — 3 and — 4, and another between 2 and 3.

10. Show that x^ + 5x* — 20x2 — 19x — 2 = has a root between

2 and 3, and a root between — 4 and — 5.

STUEM'S THEOREM AND METHOD.

603. In 1829, Sturm, a Swiss mathematician, discovered

a method of determining completely the number and situa-

tion of the real roots of an equation.

604. Let f(x) be an equation from which the equal roots

have been removed, and let fi(x) be the first derived func-

tion. Now divide f(x) by fi(x), and denote the remainder

ivith its signs changed by /o (x). Di\'ide /^ (x) by fo (x) and con-

tinue the operation, which is that of finding the H.C.F. of

f{x) and f\{x), except that the signs in every remainder are

changed before it is used as a divisor, until a remainder is

obtained independent of x ; the signs in this remainder must

also be changed. No other changes of sign are allowed.
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The expressions /(.i'), fi(^x), f2(x), -•• f^(x) are called

Sturm^s Functions.

Let Qi, Qo,'" Qn-i denote the successive quotients obtained;

then the steps in the operation may be represented as

follows

:

/(.^•) =Qi /i(.^') -f2(x),

Mx) =Q, Mx) -f,(x\

f-2{^) =Q, fsi^) -M^\

From these equalities we obtain the following

:

(1) Two consecutive functions cannot vanish for the same

value of X.

For if they could, all the succeeding functions would

vanish, including /„('^)j which is impossible, as it is inde-

pendent of X.

(2) When any function except the first vanishes for a par-

ticular value of jr, the two adjacent functions have opposite

signs.

Thus in A(x) = Qfs(x)-f,(x) if Mx)= 0, we have

A(x)=-Mx).

We may now state Sturm's Theorem.

Ifin Stimn^s Functions ice substitute for x any 2^(i'''ticuJcir

value a and note the number of variations of si^n ; then assign

to X a greater value b, and again note the number of variations

of sign; the number of variations lost is equcd to the number

of real roots of f(x) ichich lie between a and b.

(1) Let c be a value of x which makes some function

except the first vanish ; for example, fix), so that /^ (<;•)= 0.

Xow when x = c, f-iix), and f+ilx) have contrary signs, and

thus just before x = c and also just after x = c, the three

functions f-i^x), f(x), fr^i(x) have one permanence of sign

and one variation of sign, hence no change occurs in the
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number of variations when x passes through a value which
makes a function except J\x) vanish.

(2) Let c be a root of the equation /(a.*) = so that /(c)= 0.

Let h be any positive quantity.

Now /(c + h)=f(c)+ //^(c)+|y;(c)+ ..., [Art. 594.]

\A

and as c is a root of the equation /(.y) = 0, /(c)= 0, hence

/(c + /o=/t/;(c)+|/,(c)+-.

If h be taken very small, we may disregard the terms con-

taining its higher powers and obtain

/(c + /0=//i(c),

and as h is a positive quantity, /(c + h) and / (c) have the

same sign. That is, the function just after x passes a root

has the same sign as fi(x) at a root.

In a like manner we may show that /(c — li)= — hfi(c), or

that the function just before x passes a root has a sign

opposite to fi(x) at a root. Thus as x increases, Sturm's

Functions lose one variation of sign only when x passes

through a root of the equation /(;r)= 0.

There is at no time a gain in the number of variations of

sign, hence the theorem is established.

605. In determining the whole number of real roots of an

equation f(x)= we first substitute — oo and then + oo for

X in Sturm's Functions: the difference in the number of

variations of sign in the two cases gives the whole number
of real roots.

By substituting — oo and for x we may determine the

number of negative real roots, and the substitution of + co

and for x gives the number of positive real roots.

606. When -h co or — oo is substituted for x, the sign of

any function will be that of the highest power of x in that

function.
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607. Let us determine the number and situation of the

real roots of x" -^3x' -9x - 4. = 0.

Kevef,(x)=Sx' + 6x-9.
Now any positive factor may be introduced or removed in

finding /2(a;),/3(x), etc., for the sign of the result is not affected

by so doing ; hence multiplying the original equation by 3,

we have

3aj2 _l_ 6a; - 9)3 o;-*^ + 9.^•^ - 21 x - 12(j; + 1

f.lx)=^x + l.

2(3x- + 5
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/(^O

a; = — CO

x = — T)

x = -4.

x = -3
x = -2
x = -l
x =
x = l

x = 2

X = 3
X== CO

+

+ -

± -

+

+
+
+
+
+

Thus one root lies between

/3C^•)

+

+
+
+

+
+

+
I: and

3 variations.

3 variations.

2 variations.

2 variations.

2 variations.

2 variations.

1 variation.

1 variation.

1 variation,

no variation,

no variation.

5 : a second lies

between and — 1, and tlie third lies between 2 and 3.

EXAMPLES XLVIII. g-.

Determine the number and situation of the real roots of :

1. x3 - 4 a:2 - 6 X + 8 = 0. 5. x* - 4 x^ + x^ + 6 a: + 2 = 0.

2. 2x^-nx^ + Sx-16 = 0. 6. x^ - x^ + X - 1 = 0.

.,:3 _ 7 ^ + 7 ^ 0. ix'-^ + 23x- 10

c4 _4^3 + 6;;c2- 12x + 2 = 0. 8. x^ + x^-2x^ + 2x
= 0.

1 =0.

GRAPHICAL REPRESENTATION OF FUNCTIONS.

Coordinates.

608. Two lines drawn at right angles to each other as in

Fig. 1 form a simple system of lines of reference. Their

intersection, 0, is called the

origin. Distances from along

XX' are called abscissas; dis-

tances from XX' on a line paral-

lel to YY' are called ordinates.

X'r-

-h

P
L

o

Fig. 1.

-6

P'

609. Abscissas measured to

the right of the origin are con-

sidered ]iositive, and to the left,

negative. Ordinates measured

above XX' are considered pos/-

tive, and when taken below XX'
are negative.
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610. The abscissa and ordinate of a point are called the

co-ordinates of that point, and the lines XX' and YV are

called Co-ordinate Axes, Axis of X, and Axis of Y, or Axis

of Abscissas, and Axis of Ordinates.

611. Any point in the plane can be given by means of

these co-ordinates : thns the point P of Fig. 1 is located by
measuring the distance a to the right of O on the axis of

abscissas, and then taking a distance b vertically upwards.

Since a and b can be either positive or negative, a point

P' is found by taking a positive and b negative; F" is found

by taking a negative and b negative ; and P'" is found by

taking a negative and b positive.

Abscissas and ordinates are generally represented by x

and y respectively. Thus for the point F, x = a, and y = b;

for P', X = a, and y = — b, etc.

612. Instead of writing "the point whose co-ordinates

are 5 and 3," a more concise form is used : thus the point

(5, 3) means that the point will be found by taking an

abscissa of 5 units and an ordinate of 3.

Locate the points (3, — U)
; (5, 8) ;

(— 4, 4) ;
(—8,-3).
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Ex. 1. Construct the graph of 2 x — 1.

Let 2x — \ =y. Giving to x successive values, we obtain the

corresponding values of y as follows:

x = -2,
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614. In giving values to x it is evident that the substitu-

tion of a root gives y=0, that is, the ordinate, or distance

from the Axis of Abscissas, is 0; hence where the graph

cuts the Axis of X we have the location of a real root, and

the graph will cross the Axis of X as many times as the

equation has real and unequal roots. If the roots of the

equation be imaginary, the curve will not touch the Axis

of X.

EXAMPLES XLVIII. h.

Construct the graphs of the following functions :

1. 2 a; -3. 3. oc^-5. 5. x^-2. 7. ./•;> - 3 »:2 + 3.

2. x^'+ 2x^l. 4. x-HiC-1. 6. x3-5x+ 3. 8. xH3x2+ 5x-12.

SOLUTION OF HIGHER NUMERICAL EQUATIONS.

Commensurable Eoots.

615. A real root which is either an integer or a fraction

is said to be commensurable.

By Art. 582 we can transform an equation with fractional

coefficients into another which has all of its coethcients

integers, that of the first term being unity : hence we need

consider only equations of this form. Such equations can-

not have for a root a rational fraction in its lowest terms

[Art. 575], therefore we have only to find the integral roots.

By Art. 570 the last term oi f(x) is divisible by every

integral root, therefore to find the commensurable roots of

f{x) it is only necessary to find the integral divisors of the

last term and determine by trial which of them are roots.

616. Newton's Method. If the divisors are small numbers

we may readily ascertain by actual substitution whether

they are roots. In other cases we may use the method of

Arts. 562 and 566 or the Method of Divisors, sometimes

called Newton''s Method.

Suppose a to be an integral root of the equation

ic" +Pi^""^ -{- p^x''-^ -\ \-Pn^iX + 'Pn = 0,
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By substitution ^ye have

Transposing and dividing throughout by a, we obtain

^ = - i>«-i Ihci"'' -Ih^C"- - a"-\

Pn
in which it is evident that — must be an integer. Denot-

ing — by Q and transposing — Pn-\,

Q + i^-i = pocC'^ —picC"'" — cC~^.

Dividing again by a gives

Q + Prx-\ ... ,,_o „_2

Again, as before, the first member of the equation must
be an integer. Denoting it by Q., and proceeding as before,

we must after n divisions obtain a result

Qn-l-\'Pl _ ^
a ~

Hence if a represents one of the integral divisors of the

last term we have the following rule

:

Divide the last term by a and add the coefficient of x to the

quotient.

Divide this sum by a, and ^if the quotient is an integer add

to it the coefficient of or.

Proceed in this manner, and if a is a root of the equation

each quotient icill be an integer and the last quotient icill be —1.

The advantage of Newton's method is that the obtaining

of a fractional quotient at any point of the division shows

at once that the divisor is not a root of the equation.

Ex. Find the integral roots of x* -f 4 s-^ - :c^ -IGx- 12 = 0. By
Descartes' Rule the equation cannot have more than one positive root,

nor more than three negative roots.

The integral divisors of - 12 are ± 1, ± 2, ±.3, ±4, ±6. Sub-

stitution shows that — 1 is a root, and that + 1 is not a root.
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To ascertain if 2 is a root, arrange the work as follows

:

1 + 4 - 1 - 16 - 12 [2

-1-6-11- 6

- 2 - 12 - 22
Hence 2 is a root.

Explanation. The first line contains the coefficients of the original

equation, and the divisor 2. Dividing the last term, — 12, by 2 gives

a quotient — 6 ; adding — 16, the coefficient of x, gives — 22. Divid-

ing — 22 by 2 gives — 11 ; adding — 1, the coefficient of x^, gives —12.
Dividing — 12 by 2 gives — 6 ; adding + 4, the coefficient of x^, gives

— 2, which divided by 2 gives a final quotient of — 1, hence 2 is a

root.

Since the equation can have no more than one positive root, we
will only make trial of the remaining negative divisors, thus

:

1 + 4-1-16- 12|-6
+ 2

- 14

Hence — 6 is not a root.

1 +4_1 _ 16-121 -3
-1-1+4+ 4

+ 3 + 3-12

Hence — 3 is a root.

121-41+4-1-16
+ 3

-13
Hence — 4 is not a root.

1+4-1- 16- 12 i^

- 1 - 2 + 5 + 6

+ 2 + 4-10
Hence — 2 is a root.

Solve
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617. The Cube Roots of Unity.

Suppose X = ^1 ; then x^ = 1, or :)t^ — 1 = ;

that is (x - l)(aj2 + ic + 1) = 0.

.-. either ic — 1 = 0, or ^-^ + .t + 1 = ;

Avhence x^l, or x = =-

It may be shown by actual involution that each of these

values when cubed is equal to unity. Thus unity has three

cube roots,

-14-V33 -1-V33
'

2
'

2
'

two of which are imaginary expressions.

Let us denote these by a and b ; then since they are the

roots of the equation

x^ + x- + 1 = 0,

their product is equal to unity

;

that is, ab = 1\

.'. ct?b = «^;

that is, 6 = a^, since oj^ = 1.

Similarly we may show that a = b^.

618. Since each of the imaginary roots is the square of the

other, it is usual to denote the three cube roots of unity

by 1, CO, 0)1*

Also (X) satisfies the equation x^ -\- x-\-l = 0-,

.-. 1 + 0) + (0^ = 0;

that is, the sum of the three cube roots of unity is zero.

Again w • w^ = w^ = 1

;

therefore (1) the product of the tivo imaginary roots is unity;

(2) every integral poiver of <o^ is unity.

* The Greek letter Omega.
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CARDAN'S METHOD FOR THE SOLUTION OF CUBIC
EQUATIONS.

619. The general type of a cubic equation is

x" -f- P^^ + Qx + R = 0,

but as explained in Art. 5S5 this equation can be reduced

to the simpler form a^ -{- qx -\- 7' = 0,

which we shall take as the standard form of a cubic equation.

620. We proceed to solve the equation x^ -f- qx -\- r = 0.

Let x = y -\- z; then

ix^ = y^ + z^ -\- Syz(y -\- z) = f + z^ + Syzx,

and the given equation becomes

y^-^z' + (3yz + q)x-\-r = 0.

At present y, z are any two quantities subject to the con-

dition that their sum is equal to one of the roots of the given

equation ; if we further suppose that they satisfy the equa-

tion 3yz + q = 0, they are completely determinate. We
thus obtain

f-{-z' = -r (1),

hence cf - ^^^ = - r, or y^ + ry^ =^ •

Solving this equation,

^^=-^Vi3- •••••• (^)-

Substituting in (1), 2;» = -|-^^ +^ (4).

We obtain the value of x from the relation x = y -\-Z', thus

-I 2+V4^27> + i, 2 \4 + 27)
^'
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The above solution is generally known as Cardan^s Solu-

tion, as it was first published by him in the Ars Magna, in

1545. Cardan obtained the solution from Tartaglia; but

the solution of the cubic seems to have been due originally

to Scipio Ferreo, about 1505.

In this solution we assume x = y -\-z, and from CI) find

2 =—^, hence to solve a cubic equation of the form
32/

a^ + qx-\- r =
ive substitute y—— for x.

Ex. Solve the equation x^ - l^x = 126.

Put y — (

—

—
)
or 1/ + - for x, then

V 3y / y

2/3+ 15^ + ^ + 1^- 15y-^ = 126,
y y^ y

or ./ + i^=126,

whence y^ - 126 y^ = - 125.

.-. y^ = 125,

.-. y = 5.

But x = v + - = 6.

y
Dividing the given equation x^ — \bx — 126 = by a; — 6, we

obtain the depressed equation

a;2 + 6a; + 21 = 0,

the roots of which are — 3 + 2V— 3, and — 3 — 2\/— 3.

Thus the roots of x^ - 15x = 126 are 6, - 3 + 2V^^, and - 3

BIQUADRATIC EQUATIONS.

621. We shall now give a brief discussion of some of the

methods which are employed to obtain the general solution

of a biquadratic equation. It will be found that in each of

the methods we have first to solve an auxiliary cubic equa-

tion; and thus it will be seen that as in the case of the

cubic, the general solution is not adapted for writing down
the solution of a given numerical equation.
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622. The solution of a biquadratic equation was first

obtained by Ferrari, a pupil of Cardan, as follows

:

Denote the equation by

x'' + 2px'^ + gx^ + 2 ?-aj + s =
;

add to each side {ax + 6)^, the quantities a and h being

determined so as to make the left side a perfect square

;

then

a?* + '^n^ + (g + «') ^^ + 2 (r + a6) X + s 4- ?>' = (aa.- + h)\

Suppose that the left side of the equation is equal to

{q^- -^px -\- Tif ; then by comparing the coefficients, we have

p^ -\-2k = q-\- a?, pA: = r -\- ah, Ic- = s -\-
h'^

\

by eliminating a and h from these equations, we obtain

(pA; - rf = (2k +p' - q) (k' - s),

or 2k^ - qk^ + 2 (pr - s) k +ph - qs - o"" = 0.

From this cubic equation one real value of k can always

be found [Art. 600] ; thus a and b are known. Also

(x' + 2^^ +ky = (ax + bf',

.'. x^ -{- px -\- k = ± (ax + b)
;

and the values of x are to be obtained from the two

quadratics

x' + (p -a)x + (k -b) = 0, ,

and x^-\-(p-^ a) x + (k -\-b) = 0.

Ex. Solve the equation

x4 _ 2x3 - 5a;2 + lOx - 3 = 0.

Add «%2 _|. 2 abx + b^ to each side of the equation, and assume

xi-2x^-\- (a2 - 5) a;2 + 2 (a6 + 5) x + b^ - S = (x'^ - x + k)'^
;

then by equating coefficients, we have

a2 ^ 2 A: + 6, ab = -k-b, 5^ = A;2 + 3

;

.-. (2^• + 6)(A:2 + 3) zz(^^ + 5)2;

... 2F + 5A;2-4A--7=0.

By trial, we find that k = -\; hence a^ - 4^ 62-4^ ab =- 4.

But from the assumption, it follows that
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Substituting the values of k, a and b, we have the two equations

that is ic2 - 3 a; + 1 = 0, and x^ -\- x - S = ;

whence the roots are —^^^—, ~—

623. The following solution was given by Descartes in

1637.

Suppose that the biquadratic equation is reduced to the

form
x'^ + qx^ + rx -f s = ;

assume x'^ + qx^ -\- 7'x -\- s = (x^ + kx + I) (oi^ — kx + m)
;

then by equating coefficients, we have

I -\-m — k'^= q, k(m — l)= r, Im = s.

From the first two of these equations, we obtain

2m = k'-^q + 'y, 2l = k' + q-l',
k, k

hence substituting in the third equation,

Qi^ -\-qk + r)(k^ + qk - ?') = 4 sk%

or k' + 2qk'-h {(f - 4 s)k'' - r^ = 0.

This is a cubic in k'^ which always has one real positive

solution [Art. 600] ; thus when k'^ is known the values of I

and m are determined, and the solution of the biquadratic is

obtained by solving the two quadratics

x^ -\-kx-\-l = 0, and x^ — kx + m = 0.

Ex. Solve the equation

a;4_ 2x2 + 8:^-3 = 0.

Assume x* — 2 a;^ + 8 x — 3 = (x^ + A'»; -|- {x- — kx + iii)
;

then by equating coefficients, we have

Z + w - k' = - 2, k{m -1)='^, Im = - 3
;

whence we obtain {k^ - 2 /j + 8) {k^ - 2 ^ - 8) = - 12 k%

or l^ - 4 A;* + 1(3 k:^ - 04 = 0.
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This equation is clearly satisfied when k"^ — 4: = 0, or k = ± 2. It

will he sufficient to consider one of the values of k
;
putting k = 2, we

have

tn + I = 2, tn — I = 4; that is, I =— 1, m = 3.

Thus a:* - 2 x2 + 8x - 3 = (x2 + 2 X - 1) (x2 - 2 X + 3)

;

hence ic^ + 2 a: — 1 = 0, and cc^ — 2x + 3=0;

and therefore the roots are — 1 ± y/2, 1 ± V— 2.

624. The general algebraic solution of equations of a

degree higher than the fourth has not been obtained, and

Abel's demonstration of the impossibility of such a solution

is generally accepted by mathematicians. If, however, the

coefficients of an equation are numerical, the value of any

real root may be found to any required degree of accuracy

by the method of Art. 626.

EXAMPLES XLVIII. k.

Solve the following equations

:

1. x^-lSx = S5. 8. x3-6a;2 + 3x-18 = 0.

2. x3 + 72 X- 1720 = 0. 9. 8^3 - 36x + 27 = 0.

3. x3 + 63x- 316 = 0. 10. x3-15x-4 = 0.

4. x3 + 21x + 342 =0. 11. x4 + 8x3 + 9x2- 8x- 10 = 0.

5. 28x3-9x2 + 1=0. 12. x4 + 2x3-7x2-8x + 12=0.

6. x3 - 15x2 -33x + 847 = 0. 13. x^ - 3x2 - 6x - 2 = 0.

7. 2x3 + 3x2 + 3x + 1 = 0. 14. x* - 2x3 - 12x2 + lOx + 3= 0.

INCOMMENSURABLE ROOTS.

625. The incommensurable roots of an equation cannot

be found exactly. If, however, a sufficient number of the

initial figures of the root have been found to distinguish it

from the other roots we may carry the approximation to the

exact value to any required degree of accuracy by a method

first published in 1819 by W. G. Horner.
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HORNER'S METHOD OF APPROXIMATION.

626. Let it be required to solve the equation

o^-3x'-2x-\-5 = (1).

By Sturm's Theorem there are 3 real roots and one of

them lies between 1 and 2 ; we will find its value to four

places of decimals, which will sufficiently illustrate the

method.

Diminishing the roots of the equation by 1 [Arts. 583,

584] , we have

1 -3 _2 +5 |1

1 -2 -4 ~~

-2 -4 1
1 -1

-1 -5
1

The transformed equation is

f-5y-i-l = (2).

Equation (1) has a root between 1 and 2. The roots of

equation (2) are each less by 1 than those of equation (1)

;

hence equation (2) has a root between and 1 . This root

being less than unity the higher powers of y are each less

than y. Neglecting them, we obtain an approximate value

of y from — 5y -\-l =0, or y = .2.

Diminishing the roots of (2), the first transformed equa-

tion, by .2, we have

±0
.2
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The transformed equation is

;33 + .6 2^-4.88 2 + .008 .... (3).

Equation (2) lias a root between .2 and .3 ; the roots of

equation (3) are less by .2 than those of equation (2)

;

hence equation (3) has a root between and .1. Neglect-

ing in equation (3) the terms involving the higher powers,

as was done in the case of the first transformed equation,

we have

- 4.882; -h .008 = 0, or z = .001.

Diminishing the roots of (3), the second transformed equr-

tion, by .001, we have

.001+ .6

.001
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627. It sometimes happens that the division of the last

term of the first transformed equation by the coefficient of x

in that equation gives a quotient greater than unity. In that

case, as where the signs of these terms are alike, we obtain

another figure of the root by the method used to obtain the

integral part of the root.

628. If in any transformed equation after the first the

signs of the last two terms are the same, the figure of the root

used in making the transformation is too large and must

be diminished until these terms have unlike signs.

629. If in any transformed equation the coefficient of the

first power of the unknown quantity is zero, we may obtain

the next figure of the root by using the coefficient of the second

power of the unknown quantity as a divisor and taking the

square root of the result.

630. Negative incommensurable roots may be found by
transforming the equation into one whose roots shall be posi-

tive [Art. 580], and finding the corresponding root. This

result with its sign changed will be the root required.

631. Any Root of Any Number. By Horner's Method we
can find approximately any root of any number ; for placing

^a equal to x we have for solution the equation x" = a, or

a;« - a = 0.

EXAMPLES XLVIII. 1.

Compute the root which is situated between the given limits in the

following equations :

1. ic3 + 10 x2 + 6 X - 120 = ; root between 2 and 3.

2. x^ — 2x — 6 =0 ; root between 2 and 3.

3. x* - 2 ^3 + 21 X - 23 = ; root between 1 and 2.

4. x^ + X - 1000 = ; root between 9 and 10.

5. x^ + x^ 4- X — 100 = ; root between 4 and 5.

6. 2 x3 + 3 x2 - 4 X - 10 = ; root between 1 and 2.

7. x3 - 46 x2 - 36 X + 18 = ; root between aijd 1.
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8. x^ + X — S = ; root between 1 and 2.

9. x3 + 2 r. - 20 = ; root between 2 and 3.

10. x3 + 10 x2 + 8 X - 120 = ; root between 2 and 3.

11. 3 x3 + 5 X — 40 = ; root between 2 and 3.

12. X* - 12 x2 + 12 X - 3 = ; root between - 3 and - 4.

13. x^ — 4 X* + 7 x^ — 863 = ; root between 4 and 5.

Find the real roots of the following equations :

14. x3 - 3 X - 1 = 0. 16. x4 - 8 x3 + 12 x2 + 4 X - 8 = 0.

15. x3 - 22 X - 24 = 0. 17. x4 + x3 + x2 + 3 X - 100 = 0.

Find to four decimals, by Horner's Method, the value of the

following

:

18. ^11. 19. ^13. 20. ^5. 21. ^7.

MISCELLANEOUS EXAMPLES VII.

1. Simplify b - {b -{a + b)- [b -{b - a - b)] -\- 2 a}.

2. Find the sum of

a + b — 2{c-\- d), 6 + c — 3 (c? + a) and c + d - 4 (a + 5).

3. Multiply ix + f?/byx— 1?/.

4. It X = Q, y = 4i, z = S, find the value of v2 x + S y -\- z.

5. Find the square of 2 — 3 x + x^.

6. Solve ^^^ +^^ = 2.

X — 1 X — 6

7. Find the H. C.F. of a^ - 2 a - 4 and a^ - a^ - 4.

8. Simplify ^+-^-4+i^.
a -\-b a — b a^ - b^

x+y=v6]
5

9. Solve

10. Two digits, which form a number, change places when 18 is

added to the number, and the sum of the two numbers thus formed

is 44 : find the digits.

11. If a = 1, 6 = - 2, c = 3, d = - 4, find the value of

10a-(c+&)2
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12. Subtract - x^ + ?/2 _ ^2 from the sum of

13. Write the cube of a; + 8 y.

14. Simphfy
^ , ; x -^ x -•

15. Solve f (2 X - 7) - f (x - 8) = ^ ^' + ^ + 4.

16. Find the H.C.F. and L.C.M. of

x^ + x^-\-2x-4 and x^ + 3 x2 - 4.

17. Find the square root of 4 «* + 9(1 _ 2 a) + 3 a'^(l -4a).

18. Solve ^ "^ .

2 3J

Simplify (-^ x_\^^j^
\x -\- a X — a) X" + ax

20. When 1 is added to the numerator and denominator of a cer-

tain fraction the result is equal to f ; and when 1 is subtracted from
its numerator and denominator, the result is equal to 2: find the

fraction.

21. Show that the sum of \2a-\-Qh—c, —7 a— b+ c and ffl+ 6 + 6c,

is six times the sum of 25 a + 13 & — 8 c, - 13 a - 13 & - c, and
-11« + 6 + 10 c.

22. Divide x^ — xy + j% y^ hj x — ^y.

23. Add together 18 |
— - - [^ + sVv

,

KT-^^)-"<^^«{lf-5(—>}
24. Find the factors of (i.) 10 x"^ + 79 x - 8. (ii.) 729 x^ - y^.

25. Solve
2x-l 5a:4-3^3_4.x-118^

5 17 11

26. Find the value of

(5 a-Sh){a-b)-b{3a- r(4 a-b)- b^(a + c)},

when a = 0, /> = — 1, c = |.

27. Find the H.C.F. of 7 ic3-10x2-7 a:+ 10 and 2 x^-x'^-2 x-\-l.

x^ - 7 xy + 12 !/2 x^ - 6xy + iy^
28. Simplify

x^ + 5 xy + 6 ?/2 x'-^ + X2/ — 2 ?/2

2k
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29. Solve ^«^^+ ^= ^n.
4abx + Sy = 17 6 J

30. Find the two times between 7 and 8 o'clock when the hands

of a watch are separated by 15 minutes.

31. If a = 1, & = - 2, c = 3, fZ = - 4, find the value of

y/cP - 4 5 + a^ - Vc^ ^ h'^ -\- a + d.

32. Multiply the product of Ix'^-lxy+ y^ and ^x+y by x^-Sy-^

33. Simplify by removing brackets a* — (4 a^ _ (6 a^ _ 4 ^^ _1_ i)|

_[_ 2 - (a* - (- 4 «3 - 6 «2 - 4 a)} - (8 a - 1)].

34. Find the remainder when 6x'^ — 7x^-\-Sx'^-x + S is divided

by x — 4.

35. Simplify 2

+ 2/ =18
36. Solve

^
„ [•

2x + y^^^ = 29\
4 J

37. Fmd the square root of 4 x^ - 12 :»•* + 28 x^ + 9 x^ - 42 a: + 49.

38. Solve .006 x - .491 + .723 x = - .005.

39. Find the L.C.M. of x^+t/, Sx^+2xy-y'^, and x^-x-y+xy^-

40. A bill of $12.50 is paid with quarters and half-dollars, and

twice the number of half-dollars exceeds three times that of the

quarters by 10 : how many of each are used ?

41. Simplify (a+6 + c)2-(«-6-(-c)2-{-(a-f 6-c)2-(-a+ /)+ c)2.

42. Find the remainder when a* — 3 a% + 2 a'^b'^ — &"* is divided

by ^2 - «6 + 2 62.

43. If a = 0, 6 = 1, c = - 2, fZ = 3, find the value of

(3 abc - 2 bed) \/a^bc - c%d + 3-

44. Find an expression which will divide both 4 ^2 4- 3 x — 10 and

4a:3-f-7x2 — 3x— 15 without remainder.

^
I

ab 1_1
45. Simplify —^p^ x -^-^.

a2 + &2 a b

XlP"
46. Find the cube root of 8 x^ - 2 x-y + -^

47. Solve
9x+82/ = 43xn.
8 X -I- 9 y = 42 xy i

216
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48. Simplify —^ ? ^^^

49. Find the L. C. M. of

8 x3 + 38 x2 + 59 X + 30 and 6 x^ - 13 .r^ - 13 x + 30.

50. A boy spent lialf of his money in one shop, one-third of the

remainder in a second, and one-fifth of what he had left in a third.

He had 20 cents at last : how much had he at first ?

51. Find the remainder when x'^ — 10 a;^ -H 8 x^ — 7 r^ + 3 x — 11

is divided by x^ — 5 x + 4.

52. Simplify 4 |« -|(5 -
^^ }

1 1 (2 « - &)+ 2 (5 - c) }
•

53. If « = f|, 5 = 1, c 1=
I,

prove that

y/a — c2

54. Find the L. C. M. of x^- 7 x + 12, 3 x2- 6 x- 9, and 2 x2- 6 x- 8.

55. Find the sum of the squares of ax -f- hij^ bx — ay, ay -{- bx,

by — ax ; and express the result in factors.

56. Solve - +
6 4

57. Simplify
a

58. Solve x-f3x- ^^;+^
^ = ^(2x + 67) + ^[l+-y

69. Add together the following fractions :

2 — 4 X x^ — x2

x2 -f- x^ + i/2 x3 - y^ ?/2(x - ?/)2 x'^y - y^

60. A man agreed to work for 30 days, on condition that for every

day's work he should receive $2.50, and that for every day's absence

from work he should forfeit $ 1.50 ; at the end of the time he received

$ 51 : how many days did he work ?

61. Divicle-2^+27-iM^-4x* + Il^'-5i^by5f+S-x.
4 4 8 4 2

62. Find the value of

when X = — \ and y = 2,
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10 :/: - 11 10 X - 1 ,
x^ - 2 .r + 5

63. Simplify
3 (x2 - 1) 3 (x-2 + X + 1) (x3 - 1) (a: + 1)

64. Find the cube root of ^ ofi -^-^x^ -{-^-^x'^ --x^

65. Solve
4.-17

^
10.x-13 ^ 8..-30 5^,

X _ 4 2 .X - 3 2x-l x-1

66. Find the factors of (i.) xH5x2+:*-+ 5. (ii-) x2-2 x?/-323 ?/2.

iG>- + 2/)+2^ = 2l]

67. Solve Sx-^(ij -^ z)=Q5\ •

68. Simplify — ——;

—

^
— „_ .,

-

^ ^ Ix-y 2 x-^ + 3 xy - 3o y^

69. Find the square root of -(3 6 - 2 c - 2 ay\2 {a + c) - 3 h}.

70. The united ages of a man and his wife are six times the united

ages of their children. Two years ago their united ages were ten

times the united ages of their children, and six years hence their

united ages will be three times the united ages of the children : how
many children have they ?

71. Find the sum of

.x2 -^xy -
I ?/2, 2 ?/2 - f ?/3 + ^2^ xy -^y'^-\- y^, and 2 x?/ - i if.

72. From {(« + 6)(a-x) - («-6)(6-x)} subtract (a-hby-2bx.

73. If a = 5, b = i, c = 3, find the value of

v/6 abc + (6 + c)3 + (c + ay + (a + 6)3 - (« + 6 + c)3.

74. Find the factors of

(i.) 3 x3 + 6 x2 - 189 X. (ii.) «2 + 2 «6 + 6^ _^ a + b.

75. Solve PX = QU\.
r ){p + q)x-{q-p)y

76. Simplify

2x2 ^x. + f 4(x3-|)

77. Solve ^L^ +—L_ ^ 2x-i5.
x + 7 2(x + 7) 2x-6

-V.4 y2 O y _|_ 2
78. Reduce :-

*"

'

to its lowest terms.
2 x3 - X - 1
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79. Add together the fractions

1 1
and 1

2 x2 - 4 X + 2
' 2 .x^ + 4 .>; + 2

'

1 - x2

80. A number consists of three digits, the right-hand one being
zero. If the left-hand and middle digits be interchanged, the number
is diminished by 180 ; if the left-hand digit be halved, and the middle
and right-hand digit be interchanged, the number is diminished by
336 : find the number.

81. Divide 1 - 5 x + W- ^^ - llf ^* -
-^cf x^ by 1 - x - {i x^.

82. If p = 1, ^ = J, find the value of

'ip + q-{p-{q-p)}

83. Multiply ^ - 5 x^ + ^ + 9 by - - x + 3.

84. Find the L. C. M. of

{(fih - 2 ah^)'^, 2a^-Zah-2 Ifi, and 2(2 cfi + a6)2.

85. Solve 2iL±i = i^±Ll5^3x + 3.

x + 1 4x + 4 3x+l

86. Reduce —^^ ^ — to its lowest terms.
3x3-2x2 + 16x-48

87. Find the square root of

^a'^ + ^iffi + —\ + \2 a{(fi -M) + 18.

Solve ^ +^ = a + b
2a 36
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93. Find the L. C. M. of

15(p3 + ^3), 5(^2 _pq + ^^2)^ 4(p2 ^pq + ^2)^ and 6(792 _ ^^2).

94. Resolve into factors :

(i.) a3 _ 8 615. (ii.) _ a;2 + 2 X - 1 + x*.

95. Solve ^+^^^ x + ?.a
^

X + h x + a + 6

96. Simplify

.J.
35 (fih^c:^ - 49 6%3 .... ?/^-7?/ + 8?/2 - 12?/

^^'^
65 rt^^c - 91 d^b-^c^' 2y2-2ij -(50

97. Solve
7x-9^ + 4. = 16

]

X + y _ x -^ y -{- z

3 2

2x-3// + 4^-5 = J

98. Simplify _^^. (-.-^^^ x ^-^).

99. Find the square root of

4 d^ - 12 ah - 6 /)c + 4 <7r + 9 6^ 4- c^

4 «- + 9 c- — 12 ac

100. An express leaves New York at 3 p.m. and reaches Albany

at 6 ; the ordinary train leaves Albany at 1.30 p.m. and arrives at New
York at 6. If both trains travel uniformly, find the time when they

will meet.

101. Solve (i.) .6x + .75x- .16 = .73- .583x4-5.

37 , 4 7
(ii.)

x'^ — 5 X + 6 X — 2 3 — X

102. Simplify (i.) ^
^ + -''—- + -V^—^+ '^^

(fi + X + ax^ cfi — ax + x"^ q,'^ 4- a-x^ -\-x^

(ii.) (1 4- X)2 - I 1 + "—^
I .

1 -x +
1 + X + x^

103. Find the square root of

«' + -^ - ef «4 + -\ + 15 id'- + -,) -20 ;

also the cube root of the result.

104. Divide l-2x by l-t-3x to 4 terms.
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105. I bought a horse and carriage for $ 450 ; I sold the horse at a

gahi of 5 per cent, and the carriage at a gain of 20 per cent, making
on the whole a gain of 10 per cent : find the original cost of the

horse.

106. Find the divisor when (4a2 + 7fl6 + 5&'')2 is the dividend,

8 (rt + 2 &)^ the quotient, and b'^ (9 « + 11 b)'^ the remainder.

107. Solve (i.) 5x (x - 3) = 2 (x - 7).

(x-l)(x-2) x-2 x-1

108. If x = a + 5+ C^-^^)'
, and2/ = ^L+-^ + -i^,

prove that (x — a)'^ — (y — b)'^ = b'^.

109. Find the square root of

49^ 105]^_14xf_6x
25 5 5

110. Solve ^^ + ^ + ''-'' - ^^
(fi + ax + x'^ rt^ — ax + x^ x (a* + «2^2 .)_ ^4^

111. Subtract —^-±-^— from ^ + ^

x'^ + X - 12 x'^ - X - 12

2 fir"^ — 12^
and divide the difference by 1 H ^ ^.

x2 + 7 X + 12

112. Find the H. C. F. and L. C. M. of

2x2+ (6a-10?>)x-30«6 and 3x'^- (9a + 156) x + 45a&.

113. Solve (i.) 2 cx'^ - abx + 2 abd = 4 cdx.

(ii.) ^____2j\= ^"" 8x-l
2(x + 3)_ -" x2-9 4(x-3)

114. If « = 1, b=2, c = 3, fZ = 4, find the value of

6« + c'' + d« +(« + &) (6 + c) ^ ^ U & cy

115. I rode one-third of a journey at 10 miles an hour, one-third

more at 9, and the rest at 8 miles an hour ; if I had ridden half the

journey at 10, and the other half at 8 miles per hour, I should have

been half a minute longer on the way : what distance did I ride ?

116. The product of two factors is (3x + 2?/)3 - (2x + 3?/)3, and

one of the factors is x — y : find the other factor.

117. If a + b = l, prove that (d^ - b'^y^ = a^ + b'^ - ab.

118. Resolve into factors :

(i.) x^ + ij^ + Sxy (x + y). (ii.) m^ — n^ — m (m^ — 7i^) + ii (m — ny\
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119. Solve (i.) x^-y^ = 28\ (ii.) x'^ -6xy + lly"^ = 9\
x:^ + xy + y^ = 7 i' x-3y = lf'

120. Find the square root of

(a- by - 2 (a2 + 62) (a -6)2 + 2 (a* + ¥).

121. Simplify the fractions

(i-)

«2- ^^-1

« +
(ii.) A ^lLA ^

.

« + l -
^

122. Find the H. C. F. of

a^h + h'^c — abc — ah"^ and ax2 + a6 — «2 _ 53^2,

123. A village had two-thirds of its voters Republicans : in an elec-

tion 25 refused to vote, and 60 w^ent over to the Democrats ; the voters

were now equal. How many voters were there altogether ?

124. Solve (i.) _^+(«-6)- 2«^
« + 6 a + 6

(ii.)5 + ? = 6(i-±) = 2.
X y \y 2x1

125. Simplify (i.) U + yl±^.=J^\ ^ Ix - t+Jt^.
\ 2yz I \ 2xy )

,... (X + 1)3 - (a: - 1)3

^ '^
(x + \y - (X - 1)4"

126. Divide

X* + (a - l)x3 - (2a + 1) x2 + (a2 + 4 a - 5) a; + 3 a + 6

by cc2_3ic-l-a + 2.

127. Resolve into factors

:

4
(i.) x2 + 5 a:?/ - 24 ?/2 + X - 3 y. (ii.) x^

128. Find the square root of p2 _ 3 g to three terms.

129. Solve (1.)^-*^ =^-^.
a:-6 x-1 x-2 x-Z

(ii.) ax+\ = hy -\-\ =ay + hx.

130. Find the H. C. F. of

3 xi + (4a - 2 6)x - 2 a6 + a2 and a;3 + (2 a - h)x''- -(2ab- a'^)x - a^b.

131. Simplify

M! ^ W! ^ M!:. (ii.) xMMy - 4-
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132. At a cricket match the contractor provided dinner for 27 per-

sons, and fixed the price so as to gain 12^ per cent upon liis outlay.

Six of the cricketers being absent, the remaining 21 paid the fixed

price for their dinner, and the contractor lost $ 3 : what was the

charge for the dinner ?

133. Prove that a;(y + 2) + - + - is equal to a, if

y 'X'

X = -^l— and y = ^^-^.
2/+1 2

134. Find the cube root of

. x3-12x2 + 54x-112 + l^-i? + l.
\^j %Aj *K,

135. Find the H. C. F. and L. C. M. of

x^ + 2 rtx^ + aP-x, +2 a^ and x^ — 2 aofi + a'^x — 2 a^.

136. Simplify

(i.) 42 |

4x-3y Sx-^y ^
^g|

3x-2y 2x-3y }

^ "^ 36 + « a -'6b d^-^b'^'

137. Resolve 4 cfi{x^ + 18 ab'^) - (32 a^ + 9 52^3) i^to four factors.

138. Solve (i.) SVS^ - l=V75x-29.

(ii.) _^l(_:^70, ^^ = 84, _^i- = 140.
x + y x^- z y -h z

139. Show that the difference between

^
. ^ . ^ and -A_ + _^+ c

X — a X — b X — c X — a x — b x — c

is the same whatever value x may have.

140. Multiply x^ + 2 y'^ + 3 z^ by x^ - 2 y^ - 3 z^.

141. Walking 4| miles an hour, I start 1| hours after a friend

whose pace is 3 miles an hour ; how long shall I be in overtaking him ?

142. Express in the simplest form

/ 9« . 32 X— 1 - 27«
2 3 _3 I 3-n )

(i.) (83 + 42) X 16 ^. (ii.) ^;^-^

143. Find the square root of

y X yy yx
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144. Simplify

^'[x-l x-^lj' x^+l' x'^ + oy^ + 1

' \a' -2ay -^y- ' a-y i \ a^ + y^ ' cfi - ay + y^

145. Find the value of

(i.) VS + V50 - VT8 + \/48. (ii.) VSS + U^'G.

146. Solve (i.)
x-b_x,::jc_^ 2(a - h)

X — a X — b X —{a -\- b)

(ii.)
2x + Zy = n

147. Show that

(g + bY - c3 (?) + c)3 - a^ (c + ft)^ - b^

(a + b)— c b + c — a c + a — 6

is equal to 2(« + 5 + c)^ + «2 + &2 + ^2.

148. Divide a -x + 4 a^x^ — 4 a^x^

by a* + 2a^ _ x^.

149. Find the square root of

(« - 1)4 + 2(a4 + 1) - 2(a2 + 1) (a - 1)2.

150. How much are pears a gross when 12 more for a dollar lowers

the price five cents a dozen ?

151. Show that if a number of two digits is six times the sum of its

digits, the number formed by interchanging the digits is five times their

sum.

152. Find the value of

1 1 1

(a -b)ib- r) (b - c)(« - c) (c - a){b - ^O'

153. Multiply

3^, ^_12 + 4103 + 86.2 ^y^_^^^26.r-8x2_u
4 + 7 X o — 4 ;*:

154. If ic - i = 1 ,
prove tliat a;^ + — = 3, and a:^ - — = 4.

x x'^ x^

155. Solve (i.) ^^ + ^^^ = l(x + b).

(ii.) 2a-2 -3?/2 = 23-)

2xy -Sy^= 3 J
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(i.) liV20-3v5-Vi- (ii.)^(^)^^.156. Simplify

y

157. Find the H.C.F. of (p^ _ 1)^2 +(3p _ i)x - p{p - 1) and

p{p + 1)0:2 -(p2 _ 2p - l)x-{p - 1).

168. Reduce to its simplest form

ax + - x^+—
y_^ y\^ Wij-iy^

^_i
5x2 -A iW-i)'

y y^

159. Find the square root of

(i.) 1 - 22H+1 + 42"- (ii.) 9'» - 2 . 6" + 4".

160. A clock gains 4 minutes a day. What time should it indicate

at 6 o'clock in the morning in order that it may be right at 7.15 p.m.

on the same day ?

161. If X = 2 + V2, find the value of x^ + i..

162. Solve (i.) V^ + « = V^ - ^^ Hi.)
VM^ + vT: :̂ ^ 3^

y/x - h ^x vT+ic - vr^^
«2 7/2 ..'2

163. Simplify ^^ + +
(h-a^ic-a) (c- ?>)(«- 6) (a-c)(6-c)

164. Find the product of iV^, i^2, ^80, ^5, and divide

8-4V5 , 3V5-7
V5 + 1 5+V7

165. Resolve 9 x^if- - 576 y- - i x^ + 256 x2 into six factors.

i/?« o- V* /• X (x + a)^ x(x + 2a)
166. Smiplify (1.) ^t ^-^7-^

—

^^rr?
—^—^^'

^ "^ ^ ^ (x + a) (x - a) (x2 - a^) (x + a)2

^"^w+n^L 7(r+s) ^ I 21 x?/2 ^4(m2-«2)/J

167. Simplify (i.) ((1^^^)^"+^^^/ ^f •

' («~i)--p

(ii.) VU - V132.
•

168. Find the H. C. F. and L. C. M. of

20x4 + x2- 1, 25xi + 5x3^x- 1, 25x4- 10x2 + 1.
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169. Solve (i.) a -\- x + V2 ax + x^ = b.

1
(ii.) x + 9f

+

.11
7 8

170. The price of photographs is raised $ 3 per dozen, and customers

consequently receive ten less than before for $ 5 : what were the prices

charged ?

171. If f rt + -^ = 3, prove that ^3 _|. 1 _ q.

172. Find the value of

x-{-2a_^x-2a_^ 4ab ^^en x = «^

2b - X 2b -j-x x:- -4 b- a + b

173. Reduce to fractions in their lowest terms

f^
.'^ ,'^\ ( X-\-2J -^ z 1 \

^ "^ U ij z] ' \x^ + ij- + z-^ - xy - yz - zx x + y + z)

^ ^ \ x-^-4: x + sl\ X-4: x-^6j

174. Express as a whole number

(27)3 + (16)^ ^2+2-
(8)-3 (4)-^

175. Simplify

(i.) ^L_ + _iL_. (ii.) </97 - 56 V3.

176. Solve (i. ) ^^^ + ^-^^ - ^+^ + ^-±^.
x — Sa X — 4a x — 4a a; — 3a

(ii.) 3x2+ xy + 3y'' = Sl

8x2-3x^ + 8^2^171

177. Find the square root of
^^^'^ + 2aW + 54^4^

a2w + 2 a'»x" + x2«

178. Simplify

179. A boat's crew can row 8 miles an hour in still water : what

is the speed of a river's current if it take them 2 hours and 40 min-

utes to row 8 miles up and 8 miles down ?
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180. If a = x'^ — yz, h — ]p- — zx^ c = z^ — xy, prove that

a^ — be = x{ax + by -{- cz).

181. Find a quantity such that when it is subtracted from each
of the quantities a, b, c, the remainders are in continued proportion.

182. Simplify (i.) fx + y 1 ^ x ^^^^

x-\-y

(ii)
2(7 a; -4) x - 10 2(4a;-l)

^^6x2-7x + 2 (Syfi-x-2, '^x^-l'

183. Find the sixth root of

729 - 2916 x^ + 4860 x'^ - 4320 x^ + 2160 x^ - 576 x^^ + 64 x^'^

184. Simplify

(i.)—'-^= + '

X + Vx^ — 1 x — Vx^ — 1

(ii.) ^16 + ^81 - V- 512 + ^192 - 7 ^9.

185. Solve (i.) 5 = x.

6 ^-^—
6

6-x
(ii.) cc2?/2 + i92 = 28a:?/1

x-\-y = S i

186. Simplify

b — c , G — a , a — b

a2_(^,_c)2 52_(c-«)- c2-(a-6)2

187. Solve (i.) cc - 15| +— = 6.

X — 15|

(ii.) 2(x + i/--^)=S(x-^-y) = ^.

188. If xy = ab{a + 6) and x^ - x?/ + ?/2 = aS + ^3^ prove that

Va b)\b a)

189. Find the H. C. F. of

(2 a2 _ 3 « _ 2)x2 + (a^ + 7 a + 2)a; - a2 _ 2 a

and (4a2 + 4rt + i)a;2_(4(u2 + 2a):K + a2,

190. Multiply V2^ + \/2(2a;- 1) ^
\/2x

by __£_4. V2(2a:- 1)-V2a;.
V2x
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191. Divide ci^h^ + ft^c^ + c^a~ - a^h^ - h^-c^ - cH'^

by d^b 4- 6'^c + c^a — ah- — hc^ - caP:

192. Simplify

r 1 lOic-1
(i.)

2(x+l) 6(a:-l) 3(xHx+l)

Hi ) )
v'-'« + « _ Va; - ft ^ ^ Vx^ - g^

Vx — a Vx + « > \/(x + a)'^ — ax

193. lip be the difference between any quantity and its reciprocal,

q the difference between the square of the same quantity and the square

of its reciprocal, show that

194. A man started for a walk when the hands of his watch were

coincident between three and four o'clock. When he finished, the

hands were again coincident between five and six o'clock. AVhat was
the time when he started, and how long did he walk ?

195. If n be an integer, show that 7-"+i + 1 is always divisible by 8.

196. Simplify
V '^ ~i) V ~

<l)

^r(-^)'^ + :;

197. Find the value of

7 + 3V5 7 -3V5
^^ 7-3v5 7 + 3V5'

(ii.)
^1+^ + Vl - X _i 2 6

Vl +ic - VI -X ^'^ + 1

198. If « + 6 + c + (Z = 2 s, prove that

4(«6 + c.ay^ - (rt^ + 52 - a^ - d-y^ = 10(s - a) (s - 6) (s - c) (s - d).

199. A man buys a number of articles for $5, and sells for $5.40

all but two at 5 cents apiece more than they cost ; how many did he

buy?

200. Find the square root of

2(810:'* + ?/*)- 2(9x2 + y2^(^Sx - yY + (Sx- yy.

201. If X : a :: y : h :: z : c, prove that

{he + ca + ahy\x^ + ?/ + z^) = {hz + ex + ayY^a^ + ^2 + c2).

202. If a man save $ 10 more than he did the previous year, and if

he saved ^ 20 the first year, in how many years will his savings amount

to % 1700 ?
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203. Given that 4 is a root of the quadratic x^ — 5 x + (/ = 0, find

the vaUie of q and the other root.

204. A person having 7 miles to walk increases his speed one mile

an hour after the first mile, and finds that he is half an hour less on
the road than he would have been had he not altered his rate. How
long did he take ?

205. If {a +h + c)x = {-a + J> + i')ii ={a-h + c)z = {a + h-c)w,1111
show that - H 1— = •

IJ Z W X

206. Find a Geometrical Progression of which the sum of the first

two terms is 2|, and the sum to infinity 4i.

1

207. Simplify ^
'^"

^
^

xV
v)

208. A man has a stable containing 10 stalls ; in how many ways
could he stable 5 horses ?

209. In boring a well 400 feet deep the cost is 27 cents for the first

foot and an additional cent for each subsequent foot ; what is the cost

of boring the last foot, and also of boring the entire well ?

210. If a, h are the roots of x'^ -\- px + q = 0, show that p^ q are the

roots of the equation

x2 + (a + 6 - ah)x - ab{a + 6) = 0.

211. Extract the square root of 7 — 30V— 2.

212. If ^-^i^ = - =^— , determine the ratios x : y. z.

y X z-y
213. If a, &, c are in H. P. , show that

f3
+ 3_2W3^3_2N

\a h c J \c h a I

_9 ^25^
&2 rtc

214. Find the number of permutations which can be made from all

the letters of the words

(i.) Consequences, (ii.) Acarnania.

215. Expand by the Binomial Theorem (2 a — ?yx^^ ; and find the

numerically greatest term in the expansion of (1 -f x)'^^ if x = |, and

?i = 7.

216. When x =— , find the value of
4

l+2x 1-2 X

1+Vl + 2x l-Vl-2ic
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217. Simplify r— + -r vyv—-^ +
(« — 6)(a — c) {h — c){b — a) {c — a){c — h)

218. Solve the equations

(i.) {xP- - 5 X + 2)2 = a:^ - 5 a: + 22.

219. Prove that

{y - 2)3 + (x - 2/)3 + 3(0: -y)(x- z)(u -z) = (x- zy.

220. Out of 16 consonants and 5 vowels, how many words can be

formed each containing 4 consonants and 2 vowels ?

221. If h — a is a harmonic mean between c - a and d — a, show
that d — c is a harmonic mean between a — c and b — c.

222. In how many ways may 2 red balls, 3 black, 1 white, 2 blue

be selected from 4 red, 6 black, 2 white, and 5 blue ; and in how
many ways may they be arranged ?

223. The sum of a certain number of terras of an arithmetical

series is 36, and the first and last of these terms are 1 and 11 respec-

tively : find the number of terms, and the common difference of the

series.

224. Expand by the Binomial Theorem

(i.) [2 -—y. (ii.) (1 - f x)^ to five terms.

225. Solve x^ — xy -i- x = 35.

xy -y^ -^y = 15.

226. Simplify -^ x
15\/21 ^5Vg

^^^ ^^^ ^^^ ^^^^^ ^^

3V27 4 Vis 7V48

;,
given that V^ = 2.2-36.

3 V5 - 6

227. By the Binomial Theorem find the cube root of 128 to six

places of decimals.

228. There are 9 books, of which 4 are Greek, 3 are Latin, and

2 are English ; in how many ways could a selection be made so as to

include at least one of each language ?

229. Simplify

^45^ - VSO x^ + VSS
(i.)

a — X

.... j x^ + x'^ x^ -x~^ \
.

[
x^ + 2 X ^ x^ - 2 X ^

\

^"'Mx^'-X+l X2 + X + 1)"( X3-1 X^+l ^
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230. (i.) Form the quadratic equation whose roots are 5 ± y/6.

(ii.) If the roots of x'^ — j>x -\- q = are two consecutive integers,

prove that p2 _ 4 ^ _ ] — 0.

231. Solve x3 + 1 = 810/^ + ?/); x^ + x = 9(y^ + 1).

232. Find logie 128, log4 Vl28, log2 ^ ; and having given

log2 = .3010300 and log3 = .4771213,

find the logarithm of .00001728.

233. A and B start from the same point, B five days after A
;

A travels 1 mile the first day, 2 miles the second, 3 miles the third,

and so on ; B travels 12 miles a day. When will they be together ?

Explain the double answer.

234. Solve the equations :

(i.) 2^ = 8j'+i, 9y = S^-K

(ii.) s^ = ?/2^, 2^ = 2 X 4^, x + y + z = 16.

235. The sum of the first 10 terms of an arithmetical series is to

the sum of the first 5 terms as 13 is to 4 ; find the ratio of the first

term to the common difference.

236. Find the greatest term in the expansion of {1 — x)''^ when
X = if.

237. Five gentlemen and one lady wish to enter an omnibus in

which there are only three vacant places ; in how many ways can

these places be occupied (1) when there is no restriction, (2) when
one of the places is to be occupied by the lady ?

238. (i.) Given log 2 = .301030, log3= . 477121, and log7 = . 845098,

find the logarithms of .005, 6.3, and (2^)^.

(ii.) Find .'K from the equation 188-4x ,= (54^2)3^-2.

1 i
239. If P and Q vary respectively as y"^ and y^ when z is constant,

and as z'^ and z'^ when y is constant, and if x = P + ^, find the equa-

tion between x, y, z ; it being known that when y z= z =64, x = 12;

and that when y = 4 z = 16, x = 2.

240. Simplify

log.y_3 + 2 logi^ - log-VV- + logiVV

241. If the number of permutations of n things 4 at a time is to the

number of combinations of 2 n things 3 at a time as 22 to 3, find n.

242. If - + - =— 1 —
,
prove that 2 6 is either the arith-

a c 2b — a 2b —c
metic mean between 2 a and 2 c, or the harmonic mean between a
9,nd c.

2l



iS14 ALGEBRA.

243. If "Cr denote the number of combinations of n things taken

r together, prove that

244. Find (i.) the characteristic of log 54 to base 3.

(ii.) logio (.0125)-^". (iii.) the number of digits in 3*5.

Given logio2 = .30103, logio3 = .47712.

245. Write the (r + l)th term of (2 ax^ — x^)^^ and express it in

its simplest form.

246. At a meeting of a debating society there were 9 speakers

;

5 spoke for the affirmative, and 4 for the negative. In how many
ways could the speeches have been made, if a member of the affirma-

tive always spoke first, and the speeches were alternately for the

affirmative and the negative ?

247. Form the quadratic equation whose roots are

a + 6 + Va- + b-' and ^ -'^^

« + 6 + y/ci^ + ?>2

248. A point moves with a speed which is different in different

miles, but invariable in the same mile, and its speed in any mile varies

inversely as the number of miles travelled before it commences this

mile. If the second mile be described in 2 hours, find the time taken

to describe the 7ith mile.

249. Solve the equations

:

(i.) x\h - c) + ax{c - a)+a\a -b)=0.
(ii.) {x^ — px + p") (qx 4- pq + p^) = qx^ + p'^q^ + p^.

250. Prove by the Binomial Theorem that VS is the value, to

infinity, of

3 3^ 3.5.7 ._

44.84.8.12

251. A and B run a mile race. In the first heat A gives B a start

of 11 yards and beats him by 57 seconds ; in the second heat A gives

B a start of 81 seconds and is beaten by 88 yards : in what time could

each run a mile ?

252. A train, an hour after starting, meets with an accident which

detains it an hour, after which it proceeds at three-fifths of its former

rate and arrives 3 hours after time ; but had the accident happened

50 miles farther on the line, it would have arrived 1 ^ hours sooner : firicl

the length of the journey.
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253. Expand for 4 terms by the method of Undetermined Co-
2

efficients
2x3

254. A body of men were formed into a hollow square, three deep,
when it was observed that with the addition of 25 to their number a
solid square might be formed, of which the number of men in each
side would be greater by 22 than the square root of the number of men
in each side of the hollow square : required the number of men.

255. Expand into a series y/a'^ + h'^.

256. Solve the equation V2x - 1 +V3a:-2 = \/4x-3+ Vbx-4:.

7 r2 4- 99 r -I- ^
257. Separate < -^ to i»^to partial fractions.

(x + 3)(x2-l)
^

258. Solve the equation x* — 5 x^ — 6 x — 5 = 0.

259. Find the generating function of

1 + 5x+ 7x2 + 17x3 + 31x4 + ...^

260. Separate
ox-x - 4

.^^^ partial fractions.
(X2+ l)(x2 -X-2)

261. Solve the equation x^ + 3 x^ = 16 x + 60.

262. Express |f| as a continued fraction and find the fourth con-
vergent.

263. "What is the sum of n terms of the series 1, 8, 27, 64, ••• ?

264. The sum of 6 terms of the series 1— xV— 1— x2+...is equal

to 65 times the sum to infinity ; find x.

265. Convert 2y'5 into a continued fraction.

266. Find limits of the error when ^if is taken for v'23.

267. Sum to infinity the series

3 - X - 2x2 - 16x3 - 28x4 - 676x5 + ....

268. Find value of -^ J- J- -i- J- J--...
3+2+1+3+2+1 +

269. Solve, by Cardan's Method, the equation

x3 - .30 X + 133 = 0.

270. Solve the equation x3 — 13x2 + 15x + 189 = 0, having given

that one root exceeds another root by 2.

271. Solve the equation x* — 4 x^ + 8 x + 35 = 0, having given that

one root is 2 + V— 3.
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272. Sum to infinity the series

4 - 9 a- + 16 .r'^ - 25 x3 + 36 x* - 49 x^ + •• ••

273. Solve the equation x*

274. Solve the equation

12 x^ + 47 x2

4x 6x4-2 8.X + 1

.r + 2 9a: + 3 12 x

x + 1 12 X 16a: + 2

72 X + 36 = 0.

= 0.

275. Solve the equation 2 x^ + x^ + x + 2 = 12 x^ + 12x2.

276. Given log2 = .30103, and log 3 = .47712, solve the equations

:

(i.) 6^ = Lo _ 6-x. (ii.) V^ + x/5^ = 2_9,

277. Find the value of 1 + ;^ ^

(luadratic surd.

278. Separate

L _1
3+ 2+ 3+ 2+

x3 + 7 x2 - X - 8

in the form of a

(x- + X + l)(x--

-

279. Find the general term when

3x-l)

3x-8
x2—4x—

4

into partial fractions,

is expanded in ascend-

ing powers of x.

280. Solve the equations :

Vx'-\- y — Vx — y

y/x-\- y + Vx-y
(ii.) \/2 xMH; + V2 x2 - 1 = ^

(i.) X- -f y- = 65.

(iii. ) x^ — 4 X-*

\/3-2.x2

10x3 + 40x2 + 9x- 36 = 0.

/
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